
© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Using JavaBeans
with JSP
Topics in This Chapter

• Creating and accessing beans

• Installing bean classes on your server

• Setting bean properties explicitly

• Associating bean properties with input parameters

• Automatic conversion of bean property types

• Sharing beans among multiple JSP pages and servlets
Online version of this first edition of Core Servlets and JavaServer Pages is
free for personal use. For more information, please see:

• Second edition of the book:
http://www.coreservlets.com.

• Sequel:
http://www.moreservlets.com.

• Servlet and JSP training courses from the author:
http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
he JavaBeans API provides a standard format for Java classes. Visual
manipulation tools and other programs can automatically discover
information about classes that follow this format and can then create

and manipulate the classes without the user having to explicitly write any code.
Full coverage of JavaBeans is beyond the scope of this book. If you want

details, pick up one of the many books on the subject or see the documen-
tation and tutorials at http://java.sun.com/beans/docs/. For the pur-
poses of this chapter, all you need to know about beans are three simple
points:

1. A bean class must have a zero-argument (empty) con-
structor. You can satisfy this requirement either by explicitly
defining such a constructor or by omitting all constructors, which
results in an empty constructor being created automatically. The
empty constructor will be called when JSP elements create beans.

2. A bean class should have no public instance variables
(fields). I hope you already follow this practice and use accessor
methods instead of allowing direct access to the instance vari-
ables. Use of accessor methods lets you impose constraints on
variable values (e.g., have the setSpeed method of your Car
class disallow negative speeds), allows you to change your inter-
nal data structures without changing the class interface (e.g.,

T

287

288 Chapter 13 Using JavaBeans with JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
change from English units to metric units internally, but still
have getSpeedInMPH and getSpeedInKPH methods), and auto-
matically perform side effects when values change (e.g., update
the user interface when setPosition is called).

3. Persistent values should be accessed through methods
called getXxx and setXxx. For example, if your Car class
stores the current number of passengers, you might have meth-
ods named getNumPassengers (which takes no arguments and
returns an int) and setNumPassengers (which takes an int
and has a void return type). In such a case, the Car class is said to
have a property named numPassengers (notice the lowercase n
in the property name, but the uppercase N in the method
names). If the class has a getXxx method but no corresponding
setXxx, the class is said to have a read-only property named xxx.

The one exception to this naming convention is with boolean
properties: they use a method called isXxx to look up their val-
ues. So, for example, your Car class might have methods called
isLeased (which takes no arguments and returns a boolean)
and setLeased (which takes a boolean and has a void return
type), and would be said to have a boolean property named
leased (again, notice the lowercase leading letter in the property
name).

Although you can use JSP scriptlets or expressions to access arbi-
trary methods of a class, standard JSP actions for accessing beans
can only make use of methods that use the getXxx/setXxx or
isXxx/setXxx design pattern.

13.1 Basic Bean Use

The jsp:useBean action lets you load a bean to be used in the JSP page.
Beans provide a very useful capability because they let you exploit the reus-
ability of Java classes without sacrificing the convenience that JSP adds over
servlets alone.

The simplest syntax for specifying that a bean should be used is:

<jsp:useBean id="name" class="package.Class" />
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.1 Basic Bean Use 289

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
This usually means “instantiate an object of the class specified by Class,
and bind it to a variable with the name specified by id.” So, for example, the
JSP action

<jsp:useBean id="book1" class="coreservlets.Book" />

can normally be thought of as equivalent to the scriptlet

<% coreservlets.Book book1 = new coreservlets.Book(); %>

Although it is convenient to think of jsp:useBean as being equivalent to
building an object, jsp:useBean has additional options that make it more
powerful. As we’ll see in Section 13.4 (Sharing Beans), you can specify a
scope attribute that makes the bean associated with more than just the cur-
rent page. If beans can be shared, it is useful to obtain references to existing
beans, so the jsp:useBean action specifies that a new object is instantiated
only if there is no existing one with the same id and scope.

Rather than using the class attribute, you are permitted to use beanName
instead. The difference is that beanName can refer either to a class or to a file
containing a serialized bean object. The value of the beanName attribute is
passed to the instantiate method of java.beans.Bean.

In most cases, you want the local variable to have the same type as the
object being created. In a few cases, however, you might want the variable to
be declared to have a type that is a superclass of the actual bean type or is an
interface that the bean implements. Use the type attribute to control this, as
in the following example:

<jsp:useBean id="thread1" class="MyClass" type="Runnable" />

This use results in code similar to the following being inserted into the
_jspService method:

Runnable thread1 = new MyClass();

Note that since jsp:useBean uses XML syntax, the format differs in three
ways from HTML syntax: the attribute names are case sensitive, either single
or double quotes can be used (but one or the other must be used), and the
end of the tag is marked with />, not just >. The first two syntactic differ-
ences apply to all JSP elements that look like jsp:xxx. The third difference
applies unless the element is a container with a separate start and end tag.

Core Warning

Syntax for jsp:xxx elements differs in three ways from HTML syntax:
attribute names are case sensitive, you must enclose the value in single or
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

290 Chapter 13 Using JavaBeans with JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
double quotes, and noncontainer elements should end the tag with />, not
just >.

There are also a few character sequences that require special handling in
order to appear inside attribute values:

• To get ’ within an attribute value, use \’.
• To get " within an attribute value, use \".
• To get \ within an attribute value, use \\.
• To get %> within an attribute value, use %\>.
• To get <% within an attribute value, use <\%.

Accessing Bean Properties

Once you have a bean, you can access its properties with jsp:getProperty,
which takes a name attribute that should match the id given in jsp:useBean
and a property attribute that names the property of interest. Alternatively,
you could use a JSP expression and explicitly call a method on the object that
has the variable name specified with the id attribute. For example, assuming
that the Book class has a String property called title and that you’ve cre-
ated an instance called book1 by using the jsp:useBean example just given,
you could insert the value of the title property into the JSP page in either
of the following two ways:

<jsp:getProperty name="book1" property="title" />

<%= book1.getTitle() %>

The first approach is preferable in this case, since the syntax is more acces-
sible to Web page designers who are not familiar with the Java programming
language. However, direct access to the variable is useful when you are using
loops, conditional statements, and methods not represented as properties.

If you are not familiar with the concept of bean properties, the standard
interpretation of the statement “this bean has a property of type T called foo”
is “this class has a method called getFoo that returns something of type T and
has another method called setFoo that takes a T as an argument and stores it
for later access by getFoo.”

Setting Bean Properties: Simple Case

To modify bean properties, you normally use jsp:setProperty. This action
has several different forms, but with the simplest form you just supply three
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.1 Basic Bean Use 291

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
attributes: name (which should match the id given by jsp:useBean), prop-
erty (the name of the property to change), and value (the new value). Sec-
tion 13.3 (Setting Bean Properties) discusses some alternate forms of
jsp:setProperty that let you automatically associate a property with a
request parameter. That section also explains how to supply values that are
computed at request time (rather than fixed strings) and discusses the type
conversion conventions that let you supply string values for parameters that
expect numbers, characters, or boolean values.

An alternative to using the jsp:setProperty action is to use a scriptlet
that explicitly calls methods on the bean object. For example, given the
book1 object shown earlier in this section, you could use either of the follow-
ing two forms to modify the title property:

<jsp:setProperty name="book1"
property="title"
value="Core Servlets and JavaServer Pages" />

<% book1.setTitle("Core Servlets and JavaServer Pages"); %>

Using jsp:setProperty has the advantage that it is more accessible to
the nonprogrammer, but direct access to the object lets you perform more
complex operations such as setting the value conditionally or calling methods
other than getXxx or setXxx on the object.

Installing Bean Classes

The class specified for the bean must be in the server’s regular class path, not
the part reserved for classes that get automatically reloaded when they
change. For example, in the Java Web Server, the main bean class and all the
auxiliary classes it uses should go in the install_dir/classes directory or
be in a JAR file in install_dir/lib, not in install_dir/servlets. Since
Tomcat and the JSWDK don’t support auto-reloading servlets, bean classes
can be installed in any of the normal servlet directories. For Tomcat 3.0,
assuming you haven’t defined your own Web application, the primary direc-
tory for servlet class files is install_dir/webpages/WEB-INF/classes; for
the JSWDK, the default location is
install_dir/webpages/WEB-INF/servlets. With all three servers,
remember that a package name corresponds to a subdirectory. So, for exam-
ple, a bean called Fordhook that declares “package lima;” would typically
be installed in the following locations:

• Tomcat 3.0:
install_dir/webpages/WEB-INF/classes/lima/Fordhook.cla

ss
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

292 Chapter 13 Using JavaBeans with JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
• JSWDK 1.0.1:
install_dir/webpages/WEB-INF/servlets/lima/Fordhook.cl

ass

• Java Web Server 2.o:
install_dir/classes/lima/Fordhook.class

The JSP files that use bean classes don’t need to be installed anywhere spe-
cial, however. As is usual with JSP files on a JSP-capable server, they can be
placed anywhere that normal Web pages can be.

13.2 Example: StringBean

Listing 13.1 presents a simple class called StringBean that is in the core-
servlets package. Because the class has no public instance variables (fields)
and has a zero-argument constructor since it doesn’t declare any explicit con-
structors, it satisfies the basic criteria for being a bean. Since StringBean has
a method called getMessage that returns a String and another method
called setMessage that takes a String as an argument, in beans terminology
the class is said to have a String parameter called message.

Listing 13.2 shows a JSP file that uses the StringBean class. First, an
instance of StringBean is created with the jsp:useBean action as follows:

<jsp:useBean id="stringBean" class="coreservlets.StringBean" />

After this, the message property can be inserted into the page in either of
the following two ways:

<jsp:getProperty name="stringBean" property="message" />

<%= stringBean.getMessage() %>

The message property can be modified in either of the following two ways:

<jsp:setProperty name="stringBean"

property="message"

value="some message" />

<% stringBean.setMessage("some message"); %>

Figure 13–1 shows the result.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.2 Example: StringBean 293

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
Listing 13.1 StringBean.java

package coreservlets;

/** A simple bean that has a single String property
 * called message.
 */

public class StringBean {
 private String message = "No message specified";

 public String getMessage() {
 return(message);
 }

 public void setMessage(String message) {
 this.message = message;
 }
}

cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

294 Chapter 13 Using JavaBeans with JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 13.2 StringBean.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Using JavaBeans with JSP</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Using JavaBeans with JSP</TABLE>

<jsp:useBean id="stringBean" class="coreservlets.StringBean" />

Initial value (getProperty):
 <I><jsp:getProperty name="stringBean"
 property="message" /></I>

Initial value (JSP expression):
 <I><%= stringBean.getMessage() %></I>
<jsp:setProperty name="stringBean"
 property="message"

 value="Best string bean: Fortex" />

 Value after setting property with setProperty:
 <I><jsp:getProperty name="stringBean"
 property="message" /></I>

<% stringBean.setMessage("My favorite: Kentucky Wonder"); %>
 Value after setting property with scriptlet:
 <I><%= stringBean.getMessage() %></I>

</BODY>
</HTML>
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.3 Setting Bean Properties 295

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
13.3 Setting Bean Properties

You normally use jsp:setProperty to set bean properties. The simplest
form of this action takes three attributes: name (which should match the id
given by jsp:useBean), property (the name of the property to change), and
value (the new value).

For example, the SaleEntry class shown in Listing 13.3 has an itemID
property (a String), a numItems property (an int), a discountCode prop-
erty (a double), and two read-only properties itemCost and totalCost
(each of type double). Listing 13.4 shows a JSP file that builds an instance of
the SaleEntry class by means of:

<jsp:useBean id="entry" class="coreservlets.SaleEntry" />

The results are shown in Figure 13–2.
Once the bean is instantiated, using an input parameter to set the itemID

is straightforward, as shown below:

<jsp:setProperty

 name="entry"

 property="itemID"

 value='<%= request.getParameter("itemID") %>' />

Notice that I used a JSP expression for the value parameter. Most JSP
attribute values have to be fixed strings, but the value and name attributes of
jsp:setProperty are permitted to be request-time expressions. If the
expression uses double quotes internally, recall that single quotes can be used
instead of double quotes around attribute values and that \’ and \" can be
used to represent single or double quotes within an attribute value.

Figure 13–1 Result of StringBean.jsp.
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

296 Chapter 13 Using JavaBeans with JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 13.3 SaleEntry.java

package coreservlets;

/** Simple bean to illustrate the various forms
 * of jsp:setProperty.
 */

public class SaleEntry {
 private String itemID = "unknown";
 private double discountCode = 1.0;
 private int numItems = 0;

 public String getItemID() {
 return(itemID);
 }

 public void setItemID(String itemID) {
 if (itemID != null) {
 this.itemID = itemID;
 } else {
 this.itemID = "unknown";
 }
 }

 public double getDiscountCode() {
 return(discountCode);
 }

 public void setDiscountCode(double discountCode) {
 this.discountCode = discountCode;
 }

 public int getNumItems() {
 return(numItems);
 }

 public void setNumItems(int numItems) {
 this.numItems = numItems;
 }

 // Replace this with real database lookup.

 public double getItemCost() {
 double cost;
 if (itemID.equals("a1234")) {
 cost = 12.99*getDiscountCode();
 } else {
 cost = -9999;
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.3 Setting Bean Properties 297

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
 }
 return(roundToPennies(cost));
 }

 private double roundToPennies(double cost) {
 return(Math.floor(cost*100)/100.0);
 }

 public double getTotalCost() {
 return(getItemCost() * getNumItems());
 }
}

Listing 13.4 SaleEntry1.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Using jsp:setProperty</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Using jsp:setProperty</TABLE>

<jsp:useBean id="entry" class="coreservlets.SaleEntry" />

<jsp:setProperty
 name="entry"
 property="itemID"
 value='<%= request.getParameter("itemID") %>' />

<%
int numItemsOrdered = 1;
try {
 numItemsOrdered =
 Integer.parseInt(request.getParameter("numItems"));
} catch(NumberFormatException nfe) {}
%>

Listing 13.3 SaleEntry.java (continued)
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

298 Chapter 13 Using JavaBeans with JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
<jsp:setProperty
 name="entry"
 property="numItems"
 value="<%= numItemsOrdered %>" />

<%
double discountCode = 1.0;
try {
 String discountString =
 request.getParameter("discountCode");
 // Double.parseDouble not available in JDK 1.1.
 discountCode =
 Double.valueOf(discountString).doubleValue();
} catch(NumberFormatException nfe) {}
%>
<jsp:setProperty
 name="entry"
 property="discountCode"
 value="<%= discountCode %>" />

<TABLE ALIGN="CENTER" BORDER=1>
<TR CLASS="COLORED">
 <TH>Item ID<TH>Unit Price<TH>Number Ordered<TH>Total Price
<TR ALIGN="RIGHT">
 <TD><jsp:getProperty name="entry" property="itemID" />
 <TD>$<jsp:getProperty name="entry" property="itemCost" />
 <TD><jsp:getProperty name="entry" property="numItems" />
 <TD>$<jsp:getProperty name="entry" property="totalCost" />
</TABLE>

</BODY>
</HTML>

Listing 13.4 SaleEntry1.jsp (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.3 Setting Bean Properties 299

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
Associating Individual Properties with Input
Parameters

Setting the itemID property was easy since its value is a String. Setting the
numItems and discountCode properties is a bit more problematic since
their values must be numbers and getParameter returns a String. Here is
the somewhat cumbersome code required to set numItems:

<%
int numItemsOrdered = 1;
try {
 numItemsOrdered =
 Integer.parseInt(request.getParameter("numItems"));
} catch(NumberFormatException nfe) {}
%>
<jsp:setProperty
 name="entry"
 property="numItems"
 value="<%= numItemsOrdered %>" />

Fortunately, JSP has a nice solution to this problem that lets you associate
a property with a request parameter and that automatically performs type
conversion from strings to numbers, characters, and boolean values. Instead
of using the value attribute, you use param to name an input parameter. The
value of this parameter is automatically used as the value of the property, and
simple type conversions are performed automatically. If the specified input
parameter is missing from the request, no action is taken (the system does
not pass null to the associated property). So, for example, setting the
numItems property can be simplified to:

<jsp:setProperty

Figure 13–2 Result of SaleEntry1.jsp.
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

300 Chapter 13 Using JavaBeans with JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 name="entry"
 property="numItems"
 param="numItems" />

Listing 13.5 shows the entire JSP page reworked in this manner.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.3 Setting Bean Properties 301

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
Listing 13.5 SaleEntry2.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Using jsp:setProperty</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Using jsp:setProperty</TABLE>

<jsp:useBean id="entry" class="coreservlets.SaleEntry" />

<jsp:setProperty
 name="entry"
 property="itemID"
 param="itemID" />

<jsp:setProperty
 name="entry"
 property="numItems"
 param="numItems" />

<%-- WARNING! Both the JSWDK 1.0.1 and the Java Web Server
 have a bug that makes them fail on double
 type conversions of the following sort.
--%>
<jsp:setProperty
 name="entry"
 property="discountCode"
 param="discountCode" />

<TABLE ALIGN="CENTER" BORDER=1>
<TR CLASS="COLORED">
 <TH>Item ID<TH>Unit Price<TH>Number Ordered<TH>Total Price
<TR ALIGN="RIGHT">
 <TD><jsp:getProperty name="entry" property="itemID" />
 <TD>$<jsp:getProperty name="entry" property="itemCost" />
 <TD><jsp:getProperty name="entry" property="numItems" />
 <TD>$<jsp:getProperty name="entry" property="totalCost" />
</TABLE>

</BODY>
</HTML>
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

302 Chapter 13 Using JavaBeans with JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Automatic Type Conversions

Table 13.1 summarizes the automatic type conversions performed when a
bean property is automatically associated with an input parameter. One warn-
ing is in order, however: both JSWDK 1.0.1 and the Java Web Server 2.0 have
a bug that causes them to crash at page translation time for pages that try to
perform automatic type conversions for properties that expect double values.
Tomcat and most commercial servers work as expected.

Core Warning

With the JSWDK and the Java Web Server, you cannot associate properties
that expect double-precision values with input parameters.

Table 13.1 Type Conversions When Properties Are Associated with
Input Parameters

Property Type Conversion Routine

boolean Boolean.valueOf(paramString).booleanValue()

Boolean Boolean.valueOf(paramString)

byte Byte.valueOf(paramString).byteValue()

Byte Byte.valueOf(paramString)

char Character.valueOf(paramString).charValue()

Character Character.valueOf(paramString)

double Double.valueOf(paramString).doubleValue()

Double Double.valueOf(paramString)

int Integer.valueOf(paramString).intValue()

Integer Integer.valueOf(paramString)

float Float.valueOf(paramString).floatValue()

Float Float.valueOf(paramString)

long Long.valueOf(paramString).longValue()

Long Long.valueOf(paramString)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.3 Setting Bean Properties 303

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
Associating All Properties with Input Parameters

Associating a property with an input parameter saves you the bother of per-
forming conversions for many of the simple built-in types. JSP lets you take
the process one step further by associating all properties with identically
named input parameters. All you have to do is to supply "*" for the prop-
erty parameter. So, for example, all three of the jsp:setProperty state-
ments of Listing 13.5 can be replaced by the following simple line. Listing
13.6 shows the complete page.

<jsp:setProperty name="entry" property="*" />

Although this approach is simple, four small warnings are in order. First, as
with individually associated properties, no action is taken when an input
parameter is missing. In particular, the system does not supply null as the
property value. Second, the JSWDK and the Java Web Server both fail for
conversions to properties that expect double values. Third, automatic type
conversion does not guard against illegal values as effectively as does manual
type conversion. So you might consider error pages (see Sections 11.9 and
11.10) when using automatic type conversion. Fourth, since both property
names and input parameters are case sensitive, the property name and input
parameter must match exactly.

Core Warning

In order for all properties to be associated with input parameters, the
property names must match the parameter names exactly, including case.

Listing 13.6 SaleEntry3.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Using jsp:setProperty</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

304 Chapter 13 Using JavaBeans with JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
13.4 Sharing Beans

Up to this point, I have treated the objects that were created with jsp:use-
Bean as though they were simply bound to local variables in the
_jspService method (which is called by the service method of the servlet
that is generated from the page). Although the beans are indeed bound to
local variables, that is not the only behavior. They are also stored in one of
four different locations, depending on the value of the optional scope
attribute of jsp:useBean. The scope attribute has the following possible val-
ues:

<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Using jsp:setProperty</TABLE>

<jsp:useBean id="entry" class="coreservlets.SaleEntry" />
<%-- WARNING! Both the JSWDK 1.0.1 and the Java Web Server
 have a bug that makes them fail on automatic
 type conversions to double values.
--%>
<jsp:setProperty name="entry" property="*" />

<TABLE ALIGN="CENTER" BORDER=1>
<TR CLASS="COLORED">
 <TH>Item ID<TH>Unit Price<TH>Number Ordered<TH>Total Price
<TR ALIGN="RIGHT">
 <TD><jsp:getProperty name="entry" property="itemID" />
 <TD>$<jsp:getProperty name="entry" property="itemCost" />
 <TD><jsp:getProperty name="entry" property="numItems" />
 <TD>$<jsp:getProperty name="entry" property="totalCost" />
</TABLE>

</BODY>
</HTML>

Listing 13.6 SaleEntry3.jsp (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.4 Sharing Beans 305

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
• page

This is the default value. It indicates that, in addition to being
bound to a local variable, the bean object should be placed in the
PageContext object for the duration of the current request. In
principle, storing the object there means that servlet code can
access it by calling getAttribute on the predefined
pageContext variable. In practice, beans created with page
scope are almost always accessed by jsp:getProperty,
jsp:setProperty, scriptlets, or expressions later in the same
page.

• application

This very useful value means that, in addition to being bound to a
local variable, the bean will be stored in the shared
ServletContext available through the predefined
application variable or by a call to getServletContext().
The ServletContext is shared by all servlets in the same Web
application (or all servlets in the same server or servlet engine if
no explicit Web applications are defined). Values in the
ServletContext can be retrieved by the getAttribute
method. This sharing has a couple of ramifications.

First, it provides a simple mechanism for multiple servlets and
JSP pages to access the same object. See the following subsection
(Conditional Bean Creation) for details and an example.

Second, it lets a servlet create a bean that will be used in JSP
pages, not just access one that was previously created. This
approach lets a servlet handle complex user requests by setting
up beans, storing them in the ServletContext, then forwarding
the request to one of several possible JSP pages to present results
appropriate to the request data. For details on this approach, see
Chapter 15 (Integrating Servlets and JSP).

• session

This value means that, in addition to being bound to a local
variable, the bean will be stored in the HttpSession object
associated with the current request, where it can be retrieved
with getValue. Attempting to use scope="session" causes an
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

306 Chapter 13 Using JavaBeans with JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
error at page translation time when the page directive stipulates
that the current page is not participating in sessions. (See
Section 11.4, “The session Attribute.”)

• request

This value signifies that, in addition to being bound to a local
variable, the bean object should be placed in the
ServletRequest object for the duration of the current request,
where it is available by means of the getAttribute method.
This value is only a slight variation of the per-request scope
provided by scope="page" (or by default when no scope is
specified).

Conditional Bean Creation

To make bean sharing more convenient, there are two situations where
bean-related elements are evaluated conditionally.

First, a jsp:useBean element results in a new bean being instantiated
only if no bean with the same id and scope can be found. If a bean with the
same id and scope is found, the preexisting bean is simply bound to the vari-
able referenced by id. A typecast is performed if the preexisting bean is of a
more specific type than the bean being declared, and a ClassCastExcep-
tion results if this typecast is illegal.

Second, instead of
<jsp:useBean ... />

you can use
<jsp:useBean ...>

statements
</jsp:useBean>

The point of using the second form is that the statements between the
jsp:useBean start and end tags are executed only if a new bean is created,
not if an existing bean is used. This conditional execution is convenient for
setting initial bean properties for beans that are shared by multiple pages.
Since you don’t know which page will be accessed first, you don’t know which
page should contain the initialization code. No problem: they can all contain
the code, but only the page first accessed actually executes it. For example,
Listing 13.7 shows a simple bean that can be used to record cumulative
access counts to any of a set of related pages. It also stores the name of the
first page that was accessed. Since there is no way to predict which page in a
set will be accessed first, each page that uses the shared counter has state-
ments like the following:
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.4 Sharing Beans 307

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
<jsp:useBean id="counter"
 class="coreservlets.AccessCountBean"
 scope="application">
 <jsp:setProperty name="counter"
 property="firstPage"
 value="Current Page Name" />
</jsp:useBean>

Collectively, the pages using the counter have been accessed
<jsp:getProperty name="counter" property="accessCount" />
times.

Listing 13.8 shows the first of three pages that use this approach. The
source code archive at http://www.coreservlets.com/ contains the other
two nearly identical pages. Figure 13–3 shows a typical result.

Listing 13.7 AccessCountBean.java

package coreservlets;

/** Simple bean to illustrate sharing beans through
 * use of the scope attribute of jsp:useBean.
 */

public class AccessCountBean {
 private String firstPage;
 private int accessCount = 1;

 public String getFirstPage() {
 return(firstPage);
 }

 public void setFirstPage(String firstPage) {
 this.firstPage = firstPage;
 }

 public int getAccessCount() {
 return(accessCount++);
 }
}

cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

308 Chapter 13 Using JavaBeans with JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 13.8 SharedCounts1.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
<TITLE>Shared Access Counts: Page 1</TITLE>
<LINK REL=STYLESHEET
 HREF="JSP-Styles.css"
 TYPE="text/css">
</HEAD>

<BODY>

<TABLE BORDER=5 ALIGN="CENTER">
 <TR><TH CLASS="TITLE">
 Shared Access Counts: Page 1</TABLE>
<P>
<jsp:useBean id="counter"
 class="coreservlets.AccessCountBean"
 scope="application">
 <jsp:setProperty name="counter"
 property="firstPage"
 value="SharedCounts1.jsp" />
</jsp:useBean>

Of SharedCounts1.jsp (this page),
SharedCounts2.jsp, and
SharedCounts3.jsp,
<jsp:getProperty name="counter" property="firstPage" />
was the first page accessed.
<P>
Collectively, the three pages have been accessed
<jsp:getProperty name="counter" property="accessCount" />
times.

</BODY>
</HTML>
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

13.4 Sharing Beans 309

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

Se
Se
Figure 13–3 Result of a user visiting SharedCounts3.jsp. The first page visited
by any user was SharedCounts2.jsp. SharedCounts1.jsp,
SharedCounts2.jsp, and SharedCounts3.jsp were collectively visited a total
of twelve times after the server was last started but prior to the visit shown in this figure.
cond edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
rvlet and JSP training courses by book’s author: courses.coreservlets.com.

	Using JavaBeans with JSP
	Topics in This Chapter
	13
	T
	1. A bean class must have a zero-argument (empty) constructor. You can satisfy this requirement e...
	2. A bean class should have no public instance variables (fields). I hope you already follow this...
	3. Persistent values should be accessed through methods called getXxx and setXxx. For example, if...

	13.1� Basic Bean Use
	Accessing Bean Properties
	Setting Bean Properties: Simple Case
	Installing Bean Classes

	13.2� Example: StringBean
	Figure 13–1 Result of StringBean.jsp.

	13.3� Setting Bean Properties
	Figure 13–2 Result of SaleEntry1.jsp.
	Associating Individual Properties with Input Parameters
	Automatic Type Conversions
	Associating All Properties with Input Parameters

	13.4� Sharing Beans
	Conditional Bean Creation
	Figure 13–3 Result of a user visiting SharedCounts3.jsp. The first page visited by any user was S...

