
© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Integrating
Servlets and JSP

The MVC Architecture
Topics in This Chapter

• Obtaining a RequestDispatcher

• Forwarding requests from servlets to dynamic resources

• Forwarding requests from servlets to static resources

• Using servlets to set up beans for use by JSP pages

• An on-line travel agency combining servlets and JSP

• Including JSP output in servlets

• A servlet that shows the raw HTML output of JSP pages

• Using jsp:forward to forward requests from JSP pages
Online version of this first edition of Core Servlets and JavaServer Pages is
free for personal use. For more information, please see:

• Second edition of the book:
http://www.coreservlets.com.

• Sequel:
http://www.moreservlets.com.

• Servlet and JSP training courses from the author:
http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
ervlets are great when your application requires a lot of real program-
ming to accomplish its task. As you’ve seen elsewhere in the book,
servlets can manipulate HTTP status codes and headers, use cookies,

track sessions, save information between requests, compress pages, access
databases, generate GIF images on-the-fly, and perform many other tasks
flexibly and efficiently. But, generating HTML with servlets can be tedious
and can yield a result that is hard to modify. That’s where JSP comes in; it lets
you separate much of the presentation from the dynamic content. That way,
you can write the HTML in the normal manner, even using HTML-specific
tools and putting your Web content developers to work on your JSP docu-
ments. JSP expressions, scriptlets, and declarations let you insert simple Java
code into the servlet that results from the JSP page, and directives let you
control the overall layout of the page. For more complex requirements, you
can wrap up Java code inside beans or define your own JSP tags.

Great. We have everything we need, right? Well, no, not quite. The
assumption behind a JSP document is that it provides a single overall presen-
tation. What if you want to give totally different results depending on the data
that you receive? Beans and custom tags, although extremely powerful and
flexible, don’t overcome the limitation that the JSP page defines a relatively
fixed top-level page appearance. The solution is to use both servlets and Jav-
aServer Pages. If you have a complicated application that may require several
substantially different presentations, a servlet can handle the initial request,

S

353

354 Chapter 15 Integrating Servlets and JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
partially process the data, set up beans, then forward the results to one of a
number of different JSP pages, depending on the circumstances. In early JSP
specifications, this approach was known as the model 2 approach to JSP.
Rather than completely forwarding the request, the servlet can generate part
of the output itself, then include the output of one or more JSP pages to
obtain the final result.

15.1 Forwarding Requests

The key to letting servlets forward requests or include external content is to
use a RequestDispatcher. You obtain a RequestDispatcher by calling the
getRequestDispatcher method of ServletContext, supplying a URL rel-
ative to the server root. For example, to obtain a RequestDispatcher associ-
ated with http://yourhost/presentations/presentation1.jsp, you
would do the following:

String url = "/presentations/presentation1.jsp";

RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher(url);

Once you have a RequestDispatcher, you use forward to completely
transfer control to the associated URL and use include to output the associ-
ated URL’s content. In both cases, you supply the HttpServletRequest and
HttpServletResponse as arguments. Both methods throw Servlet-

Exception and IOException. For example, Listing 15.1 shows a portion of a
servlet that forwards the request to one of three different JSP pages, depend-
ing on the value of the operation parameter. To avoid repeating the getRe-
questDispatcher call, I use a utility method called gotoPage that takes the
URL, the HttpServletRequest and the HttpServletResponse; gets a
RequestDispatcher; and then calls forward on it.

Using Static Resources

In most cases, you forward requests to a JSP page or another servlet. In some
cases, however, you might want to send the request to a static HTML page.
In an e-commerce site, for example, requests that indicate that the user does
not have a valid account name might be forwarded to an account application
page that uses HTML forms to gather the requisite information. With GET
requests, forwarding requests to a static HTML page is perfectly legal and
requires no special syntax; just supply the address of the HTML page as the
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.1 Forwarding Requests 355

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

argument to getRequestDispatcher. However, since forwarded requests
use the same request method as the original request, POST requests cannot
be forwarded to normal HTML pages. The solution to this problem is to sim-
ply rename the HTML page to have a .jsp extension. Renaming some-
file.html to somefile.jsp does not change its output for GET requests,
but somefile.html cannot handle POST requests, whereas somefile.jsp
gives an identical response for both GET and POST.

Supplying Information to the Destination Pages

To forward the request to a JSP page, a servlet merely needs to obtain a
RequestDispatcher by calling the getRequestDispatcher method of
ServletContext, then call forward on the result, supplying the Http-
ServletRequest and HttpServletResponse as arguments. That’s fine as
far as it goes, but this approach requires the destination page to read the

Listing 15.1 Request Forwarding Example

public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String operation = request.getParameter("operation");
 if (operation == null) {
 operation = "unknown";
 }
 if (operation.equals("operation1")) {
 gotoPage("/operations/presentation1.jsp",
 request, response);
 } else if (operation.equals("operation2")) {
 gotoPage("/operations/presentation2.jsp",
 request, response);
 } else {
 gotoPage("/operations/unknownRequestHandler.jsp",
 request, response);
 }
}

private void gotoPage(String address,
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 RequestDispatcher dispatcher =
 getServletContext().getRequestDispatcher(address);
 dispatcher.forward(request, response);
}

econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

356 Chapter 15 Integrating Servlets and JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
information it needs out of the HttpServletRequest. There are two reasons
why it might not be a good idea to have the destination page look up and pro-
cess all the data itself. First, complicated programming is easier in a servlet
than in a JSP page. Second, multiple JSP pages may require the same data, so
it would be wasteful for each JSP page to have to set up the same data. A bet-
ter approach is for the original servlet to set up the information that the desti-
nation pages need, then store it somewhere that the destination pages can
easily access.

There are two main places for the servlet to store the data that the JSP pages
will use: in the HttpServletRequest and as a bean in the location specific to
the scope attribute of jsp:useBean (see Section 13.4, “Sharing Beans”).

The originating servlet would store arbitrary objects in the HttpServlet-
Request by using

request.setAttribute("key1", value1);

The destination page would access the value by using a JSP scripting ele-
ment to call

Type1 value1 = (Type1)request.getAttribute("key1");

For complex values, an even better approach is to represent the value as a
bean and store it in the location used by jsp:useBean for shared beans. For
example, a scope of application means that the value is stored in the
ServletContext, and ServletContext uses setAttribute to store values.
Thus, to make a bean accessible to all servlets or JSP pages in the server or
Web application, the originating servlet would do the following:

Type1 value1 = computeValueFromRequest(request);

getServletContext().setAttribute("key1", value1);

The destination JSP page would normally access the previously stored
value by using jsp:useBean as follows:

<jsp:useBean id="key1" class="Type1" scope="application" />

Alternatively, the destination page could use a scripting element to explic-
itly call application.getAttribute("key1") and cast the result to Type1.

For a servlet to make data specific to a user session rather than globally
accessible, the servlet would store the value in the HttpSession in the nor-
mal manner, as below:

Type1 value1 = computeValueFromRequest(request);

HttpSession session = request.getSession(true);

session.putValue("key1", value1);

The destination page would then access the value by means of

<jsp:useBean id="key1" class="Type1" scope="session" />
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.1 Forwarding Requests 357

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

The Servlet 2.2 specification adds a third way to send data to the destina-
tion page when using GET requests: simply append the query data to the
URL. For example,

String address = "/path/resource.jsp?newParam=value";
RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher(address);
dispatcher.forward(request, response);

This technique results in an additional request parameter of newParam
(with a value of value) being added to whatever request parameters already
existed. The new parameter is added to the beginning of the query data so
that it will replace existing values if the destination page uses getParameter
(use the first occurrence of the named parameter) rather than get-
ParameterValues (use all occurrences of the named parameter).

Interpreting Relative URLs in the Destination
Page

Although a servlet can forward the request to arbitrary locations on the same
server, the process is quite different from that of using the sendRedirect
method of HttpServletResponse (see Section 6.1). First, sendRedirect
requires the client to reconnect to the new resource, whereas the forward
method of RequestDispatcher is handled completely on the server. Sec-
ond, sendRedirect does not automatically preserve all of the request data;
forward does. Third, sendRedirect results in a different final URL,
whereas with forward, the URL of the original servlet is maintained.

This final point means that, if the destination page uses relative URLs for
images or style sheets, it needs to make them relative to the server root, not
to the destination page’s actual location. For example, consider the following
style sheet entry:

<LINK REL=STYLESHEET
HREF="my-styles.css"
TYPE="text/css">

If the JSP page containing this entry is accessed by means of a forwarded
request, my-styles.css will be interpreted relative to the URL of the origi-
nating servlet, not relative to the JSP page itself, almost certainly resulting in
an error. The solution is to give the full server path to the style sheet file, as
follows:

<LINK REL=STYLESHEET
HREF="/path/my-styles.css"

TYPE="text/css">
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

358 Chapter 15 Integrating Servlets and JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
The same approach is required for addresses used in and
.

Alternative Means of Getting a
RequestDispatcher

In servers that support version 2.2 of the servlet specification, there are
two additional ways of obtaining a RequestDispatcher besides the get-
RequestDispatcher method of ServletContext.

First, since most servers let you give explicit names to servlets or JSP
pages, it makes sense to access them by name rather than by path. Use the
getNamedDispatcher method of ServletContext for this task.

Second, you might want to access a resource by a path relative to the cur-
rent servlet’s location, rather than relative to the server root. This approach is
not common when servlets are accessed in the standard manner
(http://host/servlet/ServletName), because JSP files would not be
accessible by means of http://host/servlet/... since that URL is
reserved especially for servlets. However, it is common to register servlets
under another path, and in such a case you can use the getRequest-
Dispatcher method of HttpServletRequest rather than the one from
ServletContext. For example, if the originating servlet is at
 http://host/travel/TopLevel,

getServletContext().getRequestDispatcher("/travel/cruises.jsp")

could be replaced by
request.getRequestDispatcher("cruises.jsp");

15.2 Example: An On-Line Travel
Agent

Consider the case of an on-line travel agent that has a quick-search page, as
shown in Figure 15–1 and Listing 15.2. Users need to enter their e-mail
address and password to associate the request with their previously established
customer account. Each request also includes a trip origin, trip destination,
start date, and end date. However, the action that will result will vary substan-
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.2 Example: An On-Line Travel Agent 359

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

tially based upon the action requested. For example, pressing the “Book
Flights” button should show a list of available flights on the dates specified,
ordered by price (see Figure 15–1). The user’s real name, frequent flyer infor-
mation, and credit card number should be used to generate the page. On the
other hand, selecting “Edit Account” should show any previously entered cus-
tomer information, letting the user modify values or add entries. Likewise, the
actions resulting from choosing “Rent Cars” or “Find Hotels” will share much
of the same customer data but will have a totally different presentation.

To accomplish the desired behavior, the front end (Listing 15.2) submits
the request to the top-level travel servlet shown in Listing 15.3. This servlet
looks up the customer information (see Listings 15.5 through 15.9), puts it in
the HttpSession object associating the value (of type coreservlets.Trav-
elCustomer) with the name customer, and then forwards the request to a
different JSP page corresponding to each of the possible actions. The desti-
nation page (see Listing 15.4 and the result in Figure 15–2) looks up the cus-
tomer information by means of

<jsp:useBean id="customer"

 class="coreservlets.TravelCustomer"

 scope="session" />

then uses jsp:getProperty to insert customer information into various
parts of the page. You should note two things about the TravelCustomer
class (Listing 15.5).

First, the class spends a considerable amount of effort making the customer
information accessible as plain strings or even HTML-formatted strings through
simple properties. Almost every task that requires any substantial amount of
programming at all is spun off into the bean, rather than being performed in the
JSP page itself. This is typical of servlet/JSP integration—the use of JSP does not
entirely obviate the need to format data as strings or HTML in Java code. Sig-
nificant up-front effort to make the data conveniently available to JSP more than
pays for itself when multiple JSP pages access the same type of data.

Second, remember that many servers that automatically reload servlets when
their class files change do not allow bean classes used by JSP to be in
the auto-reloading directories. Thus, with the Java Web Server for example,
TravelCustomer and its supporting classes must be in install_dir/
classes/coreservlets/, not install_dir/servlets/coreservlets/.
Tomcat 3.0 and the JSWDK 1.0.1 do not support auto-reloading servlets, so
TravelCustomer can be installed in the normal location.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

360 Chapter 15 Integrating Servlets and JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 15–1 Front end to travel servlet (see Listing 15.2).
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.2 Example: An On-Line Travel Agent 361

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Listing 15.2 /travel/quick-search.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Online Travel Quick Search</TITLE>
 <LINK REL=STYLESHEET
 HREF="travel-styles.css"
 TYPE="text/css">
</HEAD>

Figure 15–2 Result of travel servlet (Listing 15.3) dispatching request to
BookFlights.jsp (Listing 15.4).
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

362 Chapter 15 Integrating Servlets and JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
<BODY>

<H1>Online Travel Quick Search</H1>

<FORM ACTION="/servlet/coreservlets.Travel" METHOD="POST">
<CENTER>
Email address: <INPUT TYPE="TEXT" NAME="emailAddress">

Password: <INPUT TYPE="PASSWORD" NAME="password" SIZE=10>

Origin: <INPUT TYPE="TEXT" NAME="origin">

Destination: <INPUT TYPE="TEXT" NAME="destination">

Start date (MM/DD/YY):
 <INPUT TYPE="TEXT" NAME="startDate" SIZE=8>

End date (MM/DD/YY):
 <INPUT TYPE="TEXT" NAME="endDate" SIZE=8>

<P>
<TABLE CELLSPACING=1>
<TR>
 <TH> <IMG SRC="airplane.gif" WIDTH=100 HEIGHT=29
 ALIGN="TOP" ALT="Book Flight">
 <TH> <IMG SRC="car.gif" WIDTH=100 HEIGHT=31
 ALIGN="MIDDLE" ALT="Rent Car">
 <TH> <IMG SRC="bed.gif" WIDTH=100 HEIGHT=85
 ALIGN="MIDDLE" ALT="Find Hotel">
 <TH> <IMG SRC="passport.gif" WIDTH=71 HEIGHT=100
 ALIGN="MIDDLE" ALT="Edit Account">
<TR>
 <TH><SMALL>
 <INPUT TYPE="SUBMIT" NAME="flights" VALUE="Book Flight">
 </SMALL>
 <TH><SMALL>
 <INPUT TYPE="SUBMIT" NAME="cars" VALUE="Rent Car">
 </SMALL>
 <TH><SMALL>
 <INPUT TYPE="SUBMIT" NAME="hotels" VALUE="Find Hotel">
 </SMALL>
 <TH><SMALL>
 <INPUT TYPE="SUBMIT" NAME="account" VALUE="Edit Account">
 </SMALL>
</TABLE>
</CENTER>
</FORM>

<P ALIGN="CENTER">
Not yet a member? Get a free account
here.</P>
</BODY>
</HTML>

Listing 15.2 /travel/quick-search.html (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.2 Example: An On-Line Travel Agent 363

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Listing 15.3 Travel.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Top-level travel-processing servlet. This servlet sets up
 * the customer data as a bean, then forwards the request
 * to the airline booking page, the rental car reservation
 * page, the hotel page, the existing account modification
 * page, or the new account page.
 */

public class Travel extends HttpServlet {
 private TravelCustomer[] travelData;

 public void init() {
 travelData = TravelData.getTravelData();
 }

 /** Since password is being sent, use POST only. However,
 * the use of POST means that you cannot forward
 * the request to a static HTML page, since the forwarded
 * request uses the same request method as the original
 * one, and static pages cannot handle POST. Solution:
 * have the "static" page be a JSP file that contains
 * HTML only. That’s what accounts.jsp is. The other
 * JSP files really need to be dynamically generated,
 * since they make use of the customer data.
 */

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String emailAddress = request.getParameter("emailAddress");
 String password = request.getParameter("password");
 TravelCustomer customer =
 TravelCustomer.findCustomer(emailAddress, travelData);
 if ((customer == null) || (password == null) ||
 (!password.equals(customer.getPassword()))) {
 gotoPage("/travel/accounts.jsp", request, response);
 }
 // The methods that use the following parameters will
 // check for missing or malformed values.
 customer.setStartDate(request.getParameter("startDate"));
 customer.setEndDate(request.getParameter("endDate"));
 customer.setOrigin(request.getParameter("origin"));
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

364 Chapter 15 Integrating Servlets and JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 customer.setDestination(request.getParameter
 ("destination"));
 HttpSession session = request.getSession(true);
 session.putValue("customer", customer);
 if (request.getParameter("flights") != null) {
 gotoPage("/travel/BookFlights.jsp",
 request, response);
 } else if (request.getParameter("cars") != null) {
 gotoPage("/travel/RentCars.jsp",
 request, response);
 } else if (request.getParameter("hotels") != null) {
 gotoPage("/travel/FindHotels.jsp",
 request, response);
 } else if (request.getParameter("cars") != null) {
 gotoPage("/travel/EditAccounts.jsp",
 request, response);
 } else {
 gotoPage("/travel/IllegalRequest.jsp",
 request, response);
 }
 }

 private void gotoPage(String address,
 HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 RequestDispatcher dispatcher =
 getServletContext().getRequestDispatcher(address);
 dispatcher.forward(request, response);
 }
}

Listing 15.3 Travel.java (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.2 Example: An On-Line Travel Agent 365

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Listing 15.4 BookFlights.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Best Available Flights</TITLE>
 <LINK REL=STYLESHEET
 HREF="/travel/travel-styles.css"
 TYPE="text/css">
</HEAD>

<BODY>
<H1>Best Available Flights</H1>
<CENTER>
<jsp:useBean id="customer"
 class="coreservlets.TravelCustomer"
 scope="session" />
Finding flights for
<jsp:getProperty name="customer" property="fullName" />
<P>
<jsp:getProperty name="customer" property="flights" />

<P>

<HR>

<FORM ACTION="/servlet/BookFlight">
<jsp:getProperty name="customer"
 property="frequentFlyerTable" />
<P>
Credit Card:
<jsp:getProperty name="customer" property="creditCard" />
<P>
<INPUT TYPE="SUBMIT" NAME="holdButton" VALUE="Hold for 24 Hours">
<P>
<INPUT TYPE="SUBMIT" NAME="bookItButton" VALUE="Book It!">
</FORM>
</CENTER>

</BODY>
</HTML>
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

366 Chapter 15 Integrating Servlets and JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 15.5 TravelCustomer.java

package coreservlets;

import java.util.*;
import java.text.*;

/** Describes a travel services customer. Implemented
 * as a bean with some methods that return data in HTML
 * format, suitable for access from JSP.
 */

public class TravelCustomer {
 private String emailAddress, password, firstName, lastName;
 private String creditCardName, creditCardNumber;
 private String phoneNumber, homeAddress;
 private String startDate, endDate;
 private String origin, destination;
 private FrequentFlyerInfo[] frequentFlyerData;
 private RentalCarInfo[] rentalCarData;
 private HotelInfo[] hotelData;

 public TravelCustomer(String emailAddress,
 String password,
 String firstName,
 String lastName,
 String creditCardName,
 String creditCardNumber,
 String phoneNumber,
 String homeAddress,
 FrequentFlyerInfo[] frequentFlyerData,
 RentalCarInfo[] rentalCarData,
 HotelInfo[] hotelData) {
 setEmailAddress(emailAddress);
 setPassword(password);
 setFirstName(firstName);
 setLastName(lastName);
 setCreditCardName(creditCardName);
 setCreditCardNumber(creditCardNumber);
 setPhoneNumber(phoneNumber);
 setHomeAddress(homeAddress);
 setStartDate(startDate);
 setEndDate(endDate);
 setFrequentFlyerData(frequentFlyerData);
 setRentalCarData(rentalCarData);
 setHotelData(hotelData);
 }

n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.2 Example: An On-Line Travel Agent 367

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

 public String getEmailAddress() {
 return(emailAddress);
 }

 public void setEmailAddress(String emailAddress) {
 this.emailAddress = emailAddress;
 }

 public String getPassword() {
 return(password);
 }

 public void setPassword(String password) {
 this.password = password;
 }

 public String getFirstName() {
 return(firstName);
 }

 public void setFirstName(String firstName) {
 this.firstName = firstName;
 }

 public String getLastName() {
 return(lastName);
 }

 public void setLastName(String lastName) {
 this.lastName = lastName;
 }

 public String getFullName() {
 return(getFirstName() + " " + getLastName());
 }

 public String getCreditCardName() {
 return(creditCardName);
 }

 public void setCreditCardName(String creditCardName) {
 this.creditCardName = creditCardName;
 }

 public String getCreditCardNumber() {
 return(creditCardNumber);
 }

Listing 15.5 TravelCustomer.java (continued)
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

368 Chapter 15 Integrating Servlets and JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 public void setCreditCardNumber(String creditCardNumber) {
 this.creditCardNumber = creditCardNumber;
 }

 public String getCreditCard() {
 String cardName = getCreditCardName();
 String cardNum = getCreditCardNumber();
 cardNum = cardNum.substring(cardNum.length() - 4);
 return(cardName + " (XXXX-XXXX-XXXX-" + cardNum + ")");
 }

 public String getPhoneNumber() {
 return(phoneNumber);
 }

 public void setPhoneNumber(String phoneNumber) {
 this.phoneNumber = phoneNumber;
 }

 public String getHomeAddress() {
 return(homeAddress);
 }

 public void setHomeAddress(String homeAddress) {
 this.homeAddress = homeAddress;
 }

 public String getStartDate() {
 return(startDate);
 }

 public void setStartDate(String startDate) {
 this.startDate = startDate;
 }

 public String getEndDate() {
 return(endDate);
 }

 public void setEndDate(String endDate) {
 this.endDate = endDate;
 }

 public String getOrigin() {
 return(origin);
 }

Listing 15.5 TravelCustomer.java (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.2 Example: An On-Line Travel Agent 369

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

 public void setOrigin(String origin) {
 this.origin = origin;
 }

 public String getDestination() {
 return(destination);
 }

 public void setDestination(String destination) {
 this.destination = destination;
 }

 public FrequentFlyerInfo[] getFrequentFlyerData() {
 return(frequentFlyerData);
 }

 public void setFrequentFlyerData(FrequentFlyerInfo[]
 frequentFlyerData) {
 this.frequentFlyerData = frequentFlyerData;
 }

 public String getFrequentFlyerTable() {
 FrequentFlyerInfo[] frequentFlyerData =
 getFrequentFlyerData();
 if (frequentFlyerData.length == 0) {
 return("<I>No frequent flyer data recorded.</I>");
 } else {
 String table =
 "<TABLE>\n" +
 " <TR><TH>Airline<TH>Frequent Flyer Number\n";
 for(int i=0; i<frequentFlyerData.length; i++) {
 FrequentFlyerInfo info = frequentFlyerData[i];
 table = table +
 "<TR ALIGN=\"CENTER\">" +
 "<TD>" + info.getAirlineName() +
 "<TD>" + info.getFrequentFlyerNumber() + "\n";
 }
 table = table + "</TABLE>\n";
 return(table);
 }
 }

 public RentalCarInfo[] getRentalCarData() {
 return(rentalCarData);
 }

Listing 15.5 TravelCustomer.java (continued)
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

370 Chapter 15 Integrating Servlets and JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 public void setRentalCarData(RentalCarInfo[] rentalCarData) {
 this.rentalCarData = rentalCarData;
 }

 public HotelInfo[] getHotelData() {
 return(hotelData);
 }

 public void setHotelData(HotelInfo[] hotelData) {
 this.hotelData = hotelData;
 }

 // This would be replaced by a database lookup
 // in a real application.

 public String getFlights() {
 String flightOrigin =
 replaceIfMissing(getOrigin(), "Nowhere");
 String flightDestination =
 replaceIfMissing(getDestination(), "Nowhere");
 Date today = new Date();
 DateFormat formatter =
 DateFormat.getDateInstance(DateFormat.MEDIUM);
 String dateString = formatter.format(today);
 String flightStartDate =
 replaceIfMissing(getStartDate(), dateString);
 String flightEndDate =
 replaceIfMissing(getEndDate(), dateString);
 String [][] flights =
 { { "Java Airways", "1522", "455.95", "Java, Indonesia",
 "Sun Microsystems", "9:00", "3:15" },
 { "Servlet Express", "2622", "505.95", "New Atlanta",
 "New Atlanta", "9:30", "4:15" },
 { "Geek Airlines", "3.14159", "675.00", "JHU",
 "MIT", "10:02:37", "2:22:19" } };
 String flightString = "";
 for(int i=0; i<flights.length; i++) {
 String[] flightInfo = flights[i];

Listing 15.5 TravelCustomer.java (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.2 Example: An On-Line Travel Agent 371

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

 flightString =
 flightString + getFlightDescription(flightInfo[0],
 flightInfo[1],
 flightInfo[2],
 flightInfo[3],
 flightInfo[4],
 flightInfo[5],
 flightInfo[6],
 flightOrigin,
 flightDestination,
 flightStartDate,
 flightEndDate);
 }
 return(flightString);
 }

 private String getFlightDescription(String airline,
 String flightNum,
 String price,
 String stop1,
 String stop2,
 String time1,
 String time2,
 String flightOrigin,
 String flightDestination,
 String flightStartDate,
 String flightEndDate) {
 String flight =
 "<P>
\n" +
 "<TABLE WIDTH=\"100%\"><TR><TH CLASS=\"COLORED\">\n" +
 "" + airline + " Flight " + flightNum +
 " ($" + price + ")</TABLE>
\n" +
 "Outgoing: Leaves " + flightOrigin +
 " at " + time1 + " AM on " + flightStartDate +
 ", arriving in " + flightDestination +
 " at " + time2 + " PM (1 stop -- " + stop1 + ").\n" +
 "
\n" +
 "Return: Leaves " + flightDestination +
 " at " + time1 + " AM on " + flightEndDate +
 ", arriving in " + flightOrigin +
 " at " + time2 + " PM (1 stop -- " + stop2 + ").\n";
 return(flight);
 }

Listing 15.5 TravelCustomer.java (continued)
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

372 Chapter 15 Integrating Servlets and JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 private String replaceIfMissing(String value,
 String defaultValue) {
 if ((value != null) && (value.length() > 0)) {
 return(value);
 } else {
 return(defaultValue);
 }
 }

 public static TravelCustomer findCustomer
 (String emailAddress,
 TravelCustomer[] customers) {
 if (emailAddress == null) {
 return(null);
 }
 for(int i=0; i<customers.length; i++) {
 String custEmail = customers[i].getEmailAddress();
 if (emailAddress.equalsIgnoreCase(custEmail)) {
 return(customers[i]);
 }
 }
 return(null);
 }
}

Listing 15.6 TravelData.java

package coreservlets;

/** This class simply sets up some static data to
 * describe some supposed preexisting customers.
 * Use a database call in a real application. See
 * CSAJSP Chapter 18 for many examples of the use
 * of JDBC from servlets.
 */

public class TravelData {
 private static FrequentFlyerInfo[] janeFrequentFlyerData =
 { new FrequentFlyerInfo("Java Airways", "123-4567-J"),
 new FrequentFlyerInfo("Delta", "234-6578-D") };
 private static RentalCarInfo[] janeRentalCarData =
 { new RentalCarInfo("Alamo", "345-AA"),
 new RentalCarInfo("Hertz", "456-QQ-H"),
 new RentalCarInfo("Avis", "V84-N8699") };

Listing 15.5 TravelCustomer.java (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.2 Example: An On-Line Travel Agent 373

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

 private static HotelInfo[] janeHotelData =
 { new HotelInfo("Marriot", "MAR-666B"),
 new HotelInfo("Holiday Inn", "HI-228-555") };
 private static FrequentFlyerInfo[] joeFrequentFlyerData =
 { new FrequentFlyerInfo("Java Airways", "321-9299-J"),
 new FrequentFlyerInfo("United", "442-2212-U"),
 new FrequentFlyerInfo("Southwest", "1A345") };
 private static RentalCarInfo[] joeRentalCarData =
 { new RentalCarInfo("National", "NAT00067822") };
 private static HotelInfo[] joeHotelData =
 { new HotelInfo("Red Roof Inn", "RRI-PREF-236B"),
 new HotelInfo("Ritz Carlton", "AA0012") };
 private static TravelCustomer[] travelData =
 { new TravelCustomer("jane@somehost.com",
 "tarzan52",
 "Jane",
 "Programmer",
 "Visa",
 "1111-2222-3333-6755",
 "(123) 555-1212",
 "6 Cherry Tree Lane\n" +
 "Sometown, CA 22118",
 janeFrequentFlyerData,
 janeRentalCarData,
 janeHotelData),
 new TravelCustomer("joe@somehost.com",
 "qWeRtY",
 "Joe",
 "Hacker",
 "JavaSmartCard",
 "000-1111-2222-3120",
 "(999) 555-1212",
 "55 25th St., Apt 2J\n" +
 "New York, NY 12345",
 joeFrequentFlyerData,
 joeRentalCarData,
 joeHotelData)
 };

 public static TravelCustomer[] getTravelData() {
 return(travelData);
 }
}

Listing 15.6 TravelData.java (continued)
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

374 Chapter 15 Integrating Servlets and JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 15.7 FrequentFlyerInfo.java

package coreservlets;

/** Simple class describing an airline and associated
 * frequent flyer number, used from the TravelData class
 * (where an array of FrequentFlyerInfo is associated with
 * each customer).
 */

public class FrequentFlyerInfo {
 private String airlineName, frequentFlyerNumber;

 public FrequentFlyerInfo(String airlineName,
 String frequentFlyerNumber) {
 this.airlineName = airlineName;
 this.frequentFlyerNumber = frequentFlyerNumber;
 }

 public String getAirlineName() {
 return(airlineName);
 }

 public String getFrequentFlyerNumber() {
 return(frequentFlyerNumber);
 }
}

Listing 15.8 RentalCarInfo.java

package coreservlets;

/** Simple class describing a car company and associated
 * frequent renter number, used from the TravelData class
 * (where an array of RentalCarInfo is associated with
 * each customer).
 */

public class RentalCarInfo {
 private String rentalCarCompany, rentalCarNumber;

 public RentalCarInfo(String rentalCarCompany,
 String rentalCarNumber) {
 this.rentalCarCompany = rentalCarCompany;
 this.rentalCarNumber = rentalCarNumber;
 }

 public String getRentalCarCompany() {
 return(rentalCarCompany);
 }

 public String getRentalCarNumber() {
 return(rentalCarNumber);
 }
}

n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.3 Including Static or Dynamic Content 375

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

15.3 Including Static or Dynamic
Content

If a servlet uses the forward method of RequestDispatcher, it cannot actu-
ally send any output to the client—it must leave that entirely to the destina-
tion page. If the servlet wants to generate some of the content itself but use a
JSP page or static HTML document for other parts of the result, the servlet
can use the include method of RequestDispatcher instead. The process is
very similar to that for forwarding requests: call the getRequestDispatcher
method of ServletContext with an address relative to the server root, then
call include with the HttpServletRequest and HttpServletResponse.
The two differences when include is used are that you can send content to
the browser before making the call and that control is returned to the servlet
after the include call finishes. Although the included pages (servlets, JSP

Listing 15.9 HotelInfo.java

package coreservlets;

/** Simple class describing a hotel name and associated
 * frequent guest number, used from the TravelData class
 * (where an array of HotelInfo is associated with
 * each customer).
 */

public class HotelInfo {
 private String hotelName, frequentGuestNumber;

 public HotelInfo(String hotelName,
 String frequentGuestNumber) {
 this.hotelName = hotelName;
 this.frequentGuestNumber = frequentGuestNumber;
 }

 public String getHotelName() {
 return(hotelName);
 }

 public String getfrequentGuestNumber() {
 return(frequentGuestNumber);
 }
}

econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

376 Chapter 15 Integrating Servlets and JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
pages, or even static HTML) can send output to the client, they should not
try to set HTTP response headers. Here is an example:

response.setContentType("text/html");

PrintWriter out = response.getWriter();

out.println("...");

RequestDispatcher dispatcher =

getServletContext().getRequestDispatcher("/path/resource");

dispatcher.include(request, response);

out.println("...");

The include method has many of the same features as the forward
method. If the original method uses POST, so does the forwarded request.
Whatever request data was associated with the original request is also associ-
ated with the auxiliary request, and you can add new parameters (in version
2.2 only) by appending them to the URL supplied to getRequestDis-
patcher. Also supported in version 2.2 is the ability to get a RequestDis-
patcher by name (getNamedDispatcher) or by using a relative URL (use
the getRequestDispatcher method of the HttpServletRequest); see Sec-
tion 15.1 (Forwarding Requests) for details. However, include does one
thing that forward does not: it automatically sets up attributes in the Http-
ServletRequest object that describe the original request path in case the
included servlet or JSP page needs that information. These attributes,
available to the included resource by calling getAttribute on the Http-
ServletRequest, are listed below:

• javax.servlet.include.request_uri
• javax.servlet.include.context_path
• javax.servlet.include.servlet_path
• javax.servlet.include.path_info
• javax.servlet.include.query_string

Note that this type of file inclusion is not the same as the nonstandard
servlet chaining supported as an extension by several early servlet engines.
With servlet chaining, each servlet in a series of requests can see (and mod-
ify) the output of the servlet before it. With the include method of
RequestDispatcher, the included resource cannot see the output generated
by the original servlet. In fact, there is no standard construct in the servlet
specification that reproduces the behavior of servlet chaining.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.4 Example: Showing Raw Servlet and JSP Output 377

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Also note that this type of file inclusion differs from that supported by
the JSP include directive discussed in Section 12.1 (Including Files at
Page Translation Time). There, the actual source code of JSP files was
included in the page by use of the include directive, whereas the include
method of RequestDispatcher just includes the result of the specified
resource. On the other hand, the jsp:include action discussed in Section
12.2 (Including Files at Request Time) has behavior similar to that of the
include method, except that jsp:include is available only from JSP
pages, not from servlets.

15.4 Example: Showing Raw
Servlet and JSP Output

When you are debugging servlets or JSP pages, it is often useful to see the
raw HTML they generate. To do this, you can choose “View Source” from
the browser menu after seeing the result. Alternatively, to set HTTP
request headers and see the HTTP response headers in addition to HTML
source, use the WebClient program shown in Section 2.10 (WebClient:
Talking to Web Servers Interactively). For quick debugging, another option
is available: create a servlet that takes a URL as input and creates an output
page showing the HTML source code. Accomplishing this task relies on the
fact that the HTML TEXTAREA element ignores all HTML markup other
than the </TEXTAREA> tag. So, the original servlet generates the top of a
Web page, up to a <TEXTAREA> tag. Then, it includes the output of what-
ever URL was specified in the query data. Next, it continues with the Web
page, starting with a </TEXTAREA> tag. Of course, the servlet will fail if it
tries to display a resource that contains the </TEXTAREA> tag, but the point
here is the process of including files.

Listing 15.10 shows the servlet that accomplishes this task, and Listing
15.11 shows an HTML form that gathers input and sends it to the servlet.
Figures 15–3 and 15–4 show the results of the HTML form and servlet,
respectively.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

378 Chapter 15 Integrating Servlets and JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 15.10 ShowPage.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Example of the include method of RequestDispatcher.
 * Given a URI on the same system as this servlet, the
 * servlet shows you its raw HTML output.
 */

public class ShowPage extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String url = request.getParameter("url");
 out.println(ServletUtilities.headWithTitle(url) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + url + "</H1>\n" +
 "<FORM><CENTER>\n" +
 "<TEXTAREA ROWS=30 COLS=70>");
 if ((url == null) || (url.length() == 0)) {
 out.println("No URL specified.");
 } else {
 // Attaching data works only in version 2.2.
 String data = request.getParameter("data");
 if ((data != null) && (data.length() > 0)) {
 url = url + "?" + data;
 }
 RequestDispatcher dispatcher =
 getServletContext().getRequestDispatcher(url);
 dispatcher.include(request, response);
 }
 out.println("</TEXTAREA>\n" +
 "</CENTER></FORM>\n" +
 "</BODY></HTML>");
 }

 /** Handle GET and POST identically. */

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
P training courses by book’s author: courses.coreservlets.com.

15.4 Example: Showing Raw Servlet and JSP Output 379

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.

Figure 15–3 Front end to ShowPage servlet. See Listing 15.11 for the HTML source.

Figure 15–4 Result of ShowPage servlet when given a URL referring to
Expressions.jsp (see Listing 10.1 in Section 10.2).
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

380 Chapter 15 Integrating Servlets and JSP

Second editio
Servlet and JS

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.

15.5 Forwarding Requests From
JSP Pages

The most common request forwarding scenario is that the request first comes
to a servlet and the servlet forwards the request to a JSP page. The reason a
servlet usually handles the original request is that checking request parame-
ters and setting up beans requires a lot of programming, and it is more conve-
nient to do this programming in a servlet than in a JSP document. The reason
that the destination page is usually a JSP document is that JSP simplifies the
process of creating the HTML content.

However, just because this is the usual approach doesn’t mean that it is the
only way of doing things. It is certainly possible for the destination page to be
a servlet. Similarly, it is quite possible for a JSP page to forward requests else-

Listing 15.11 ShowPage.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Viewing JSP and Servlet Output</TITLE>
</HEAD>

<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Viewing JSP and Servlet Output</H1>
Enter a relative URL of the form /path/name and, optionally,
any attached GET data you want to send. The raw HTML output
of the specified URL (usually a JSP page or servlet) will be
shown. Caveats: the URL specified cannot contain the string
<CODE></TEXTAREA></CODE>, and attached GET data works
only with servlet engines that support version 2.2.

<FORM ACTION="/servlet/coreservlets.ShowPage">
 <CENTER>
 URL:
 <INPUT TYPE="TEXT" NAME="url" SIZE=50 VALUE="/">

 GET Data:
 <INPUT TYPE="TEXT" NAME="data" SIZE=50>

 <Input TYPE="SUBMIT" VALUE="Show Output">
 </CENTER>
</FORM>

</BODY>
</HTML>
P training courses by book’s author: courses.coreservlets.com.

15.5 Forwarding Requests From JSP Pages 381

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

where. For example, a request might go to a JSP page that normally presents
results of a certain type and that forwards the request elsewhere only when it
receives unexpected values.

Sending requests to servlets instead of JSP pages requires no changes
whatsoever in the use of the RequestDispatcher. However, there is special
syntactic support for forwarding requests from JSP pages. In JSP, the
jsp:forward action is simpler and easier to use than wrapping up Request-
Dispatcher code in a scriptlet. This action takes the following form:

<jsp:forward page="Relative URL" />

The page attribute is allowed to contain JSP expressions so that the desti-
nation can be computed at request time. For example, the following sends
about half the visitors to http://host/examples/page1.jsp and the oth-
ers to http://host/examples/page2.jsp.

<% String destination;
if (Math.random() > 0.5) {

destination = "/examples/page1.jsp";
} else {

destination = "/examples/page2.jsp";
}

%>
<jsp:forward page="<%= destination %>" />
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

	Integrating Servlets and JSP
	Topics in This Chapter
	15
	S
	15.1 Forwarding Requests
	Using Static Resources
	Supplying Information to the Destination Pages
	Interpreting Relative URLs in the Destination Page
	Alternative Means of Getting a RequestDispatcher

	15.2 Example: An On-Line Travel Agent
	Figure 15–1 Front end to travel servlet (see Listing 15.2).
	Figure 15–2 Result of travel servlet (Listing 15.3) dispatching request to BookFlights.jsp (Listi...

	15.3 Including Static or Dynamic Content
	15.4 Example: Showing Raw Servlet and JSP Output
	Figure 15–3 Front end to ShowPage servlet. See Listing 15.11 for the HTML source.
	Figure 15–4 Result of ShowPage servlet when given a URL referring to Expressions.jsp (see Listing...

	15.5 Forwarding Requests From JSP Pages

