
© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Handling the
Client Request:

HTTP Request
Headers
Topics in This Chapter

• Reading HTTP request headers from servlets

• Building a table of all the request headers

• The purpose of each of the HTTP 1.1 request headers

• Reducing download times by compressing pages

• Restricting access with password-protected servlets
Online version of this first edition of Core Servlets and JavaServer Pages is
free for personal use. For more information, please see:

• Second edition of the book:
http://www.coreservlets.com.

• Sequel:
http://www.moreservlets.com.

• Servlet and JSP training courses from the author:
http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
ne of the keys to creating effective servlets is understanding how to
manipulate the HyperText Transfer Protocol (HTTP). Getting a
thorough grasp of this protocol is not an esoteric, theoretical topic,

but rather a practical issue that can have an immediate impact on the perfor-
mance and usability of your servlets. This chapter discusses the HTTP infor-
mation that is sent from the browser to the server in the form of request
headers. It explains each of the HTTP 1.1 request headers, summarizing how
and why they would be used in a servlet. The chapter also includes three
detailed examples: listing all request headers sent by the browser, reducing
download time by encoding the Web page with gzip when appropriate, and
establishing password-based access control for servlets.

Note that HTTP request headers are distinct from the form data dis-
cussed in the previous chapter. Form data results directly from user input
and is sent as part of the URL for GET requests and on a separate line for
POST requests. Request headers, on the other hand, are indirectly set by the
browser and are sent immediately following the initial GET or POST request
line. For instance, the following example shows an HTTP request that
might result from submitting a book-search request to a servlet at
http://www.somebookstore.com/search. The request includes the head-
ers Accept, Accept-Encoding, Connection, Cookie, Host, Referer, and
User-Agent, all of which might be important to the operation of the serv-
let, but none of which can be derived from the form data or deduced auto-

O

93

94 Chapter 4 Handling the Client Request: HTTP Request Headers

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
matically: the servlet needs to explicitly read the request headers to make
use of this information.

GET /search?keywords=servlets+jsp HTTP/1.1

Accept: image/gif, image/jpg, */*

Accept-Encoding: gzip

Connection: Keep-Alive

Cookie: userID=id456578

Host: www.somebookstore.com

Referer: http://www.somebookstore.com/findbooks.html

User-Agent: Mozilla/4.7 [en] (Win98; U)

4.1 Reading Request Headers from
Servlets

Reading headers is straightforward; just call the getHeader method of
HttpServletRequest, which returns a String if the specified header was
supplied on this request, null otherwise. Header names are not case sensi-
tive. So, for example, request.getHeader("Connection") and
request.getHeader("connection") are interchangeable.

Although getHeader is the general-purpose way to read incoming head-
ers, there are a couple of headers that are so commonly used that they have
special access methods in HttpServletRequest. I’ll list them here, and
remember that Appendix A (Servlet and JSP Quick Reference) gives a sepa-
rate syntax summary.

• getCookies

The getCookies method returns the contents of the Cookie
header, parsed and stored in an array of Cookie objects. This
method is discussed more in Chapter 8 (Handling Cookies).

• getAuthType and getRemoteUser
The getAuthType and getRemoteUser methods break the
Authorization header into its component pieces. Use of the
Authorization header is illustrated in Section 4.5 (Restricting
Access to Web Pages).

• getContentLength

The getContentLength method returns the value of the
Content-Length header (as an int).
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.1 Reading Request Headers from Servlets 95

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

• getContentType

The getContentType method returns the value of the
Content-Type header (as a String).

• getDateHeader and getIntHeader
The getDateHeader and getIntHeader methods read the
specified header and then convert them to Date and int values,
respectively.

• getHeaderNames

Rather than looking up one particular header, you can use the
getHeaderNames method to get an Enumeration of all header
names received on this particular request. This capability is
illustrated in Section 4.2 (Printing All Headers).

• getHeaders

In most cases, each header name appears only once in the
request. Occasionally, however, a header can appear multiple
times, with each occurrence listing a separate value.
Accept-Language is one such example. If a header name is
repeated in the request, version 2.1 servlets cannot access the
later values without reading the raw input stream, since
getHeader returns the value of the first occurrence of the
header only. In version 2.2, however, getHeaders returns an
Enumeration of the values of all occurrences of the header.

Finally, in addition to looking up the request headers, you can get informa-
tion on the main request line itself, also by means of methods in Http-
ServletRequest.

• getMethod

The getMethod method returns the main request method
(normally GET or POST, but things like HEAD, PUT, and DELETE
are possible).

• getRequestURI

The getRequestURI method returns the part of the URL that
comes after the host and port but before the form data. For
example, for a URL of
http://randomhost.com/servlet/search.BookSearch,
getRequestURI would return
/servlet/search.BookSearch.

• getProtocol

Lastly, the getProtocol method returns the third part of the
request line, which is generally HTTP/1.0 or HTTP/1.1. Servlets
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

96 Chapter 4 Handling the Client Request: HTTP Request Headers

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
should usually check getProtocol before specifying response
headers (Chapter 7) that are specific to HTTP 1.1.

4.2 Printing All Headers

Listing 4.1 shows a servlet that simply creates a table of all the headers it
receives, along with their associated values. It also prints out the three com-
ponents of the main request line (method, URI, and protocol). Figures 4–1
and 4–2 show typical results with Netscape and Internet Explorer.

Listing 4.1 ShowRequestHeaders.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.*;

/** Shows all the request headers sent on this
 * particular request.
*/

public class ShowRequestHeaders extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String title = "Servlet Example: Showing Request Headers";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
 "Request Method: " +
 request.getMethod() + "
\n" +
 "Request URI: " +
 request.getRequestURI() + "
\n" +
 "Request Protocol: " +
 request.getProtocol() + "

\n" +
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.2 Printing All Headers 97

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

 "<TABLE BORDER=1 ALIGN=CENTER>\n" +
 "<TR BGCOLOR=\"#FFAD00\">\n" +
 "<TH>Header Name<TH>Header Value");
 Enumeration headerNames = request.getHeaderNames();
 while(headerNames.hasMoreElements()) {
 String headerName = (String)headerNames.nextElement();
 out.println("<TR><TD>" + headerName);
 out.println(" <TD>" + request.getHeader(headerName));
 }
 out.println("</TABLE>\n</BODY></HTML>");
 }

 /** Let the same servlet handle both GET and POST. */

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 4.1 ShowRequestHeaders.java (continued)

Figure 4–1 Request headers sent by Netscape 4.7 on Windows 98.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

98 Chapter 4 Handling the Client Request: HTTP Request Headers

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
4.3 HTTP 1.1 Request Headers

Access to the request headers permits servlets to perform a number of opti-
mizations and to provide a number of features not otherwise possible. This
section presents each of the possible HTTP 1.1 request headers along with a
brief summary of how servlets can make use of them. The following sections
give more detailed examples.

Note that HTTP 1.1 supports a superset of the headers permitted in
HTTP 1.0. For additional details on these headers, see the HTTP 1.1 specifi-
cation, given in RFC 2616. There are a number of places the official RFCs
are archived on-line; your best bet is to start at http://www.rfc-edi-
tor.org/ to get a current list of the archive sites.

Accept
This header specifies the MIME types that the browser or other client
can handle. A servlet that can return a resource in more than one format

Figure 4–2 Request headers sent by Internet Explorer 5 on Windows 98.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.3 HTTP 1.1 Request Headers 99

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

can examine the Accept header to decide which format to use. For exam-
ple, images in PNG format have some compression advantages over those
in GIF, but only a few browsers support PNG. If you had images in both
formats, a servlet could call request.getHeader("Accept"), check for
image/png, and if it finds it, use xxx.png filenames in all the IMG ele-
ments it generates. Otherwise it would just use xxx.gif.

See Table 7.1 in Section 7.2 (HTTP 1.1 Response Headers and Their
Meaning) for the names and meanings of the common MIME types.

Accept-Charset

This header indicates the character sets (e.g., ISO-8859-1) the browser
can use.

Accept-Encoding

This header designates the types of encodings that the client knows how
to handle. If it receives this header, the server is free to encode the page
by using the format specified (usually to reduce transmission time),
sending the Content-Encoding response header to indicate that it has
done so. This encoding type is completely distinct from the MIME type
of the actual document (as specified in the Content-Type response
header), since this encoding is reversed before the browser decides what
to do with the content. On the other hand, using an encoding the
browser doesn’t understand results in totally incomprehensible pages.
Consequently, it is critical that you explicitly check the Accept-Encod-
ing header before using any type of content encoding. Values of gzip
or compress are the two standard possibilities.

Compressing pages before returning them is a very valuable service
because the decoding time is likely to be small compared to the savings
in transmission time. See Section 4.4 (Sending Compressed Web
Pages) for an example where compression reduces download times by
a factor of 10.

Accept-Language

This header specifies the client’s preferred languages, in case the servlet
can produce results in more than one language. The value of the header
should be one of the standard language codes such as en, en-us, da,
etc. See RFC 1766 for details.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

100 Chapter 4 Handling the Client Request: HTTP Request Headers

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Authorization
This header is used by clients to identify themselves when accessing
password-protected Web pages. See Section 4.5 (Restricting Access to
Web Pages) for an example.

Cache-Control
This header can be used by the client to specify a number of options for
how pages should be cached by proxy servers. The request header is
usually ignored by servlets, but the Cache-Control response header
can be valuable to indicate that a page is constantly changing and
shouldn’t be cached. See Chapter 7 (Generating the Server Response:
HTTP Response Headers) for details.

Connection
This header tells whether or not the client can handle persistent HTTP
connections. These let the client or other browser retrieve multiple files
(e.g., an HTML file and several associated images) with a single socket
connection, saving the overhead of negotiating several independent
connections. With an HTTP 1.1 request, persistent connections are the
default, and the client must specify a value of close for this header to
use old-style connections. In HTTP 1.0, a value of keep-alive means
that persistent connections should be used.

Each HTTP request results in a new invocation of a servlet, regardless
of whether the request is a separate connection. That is, the server
invokes the servlet only after the server has already read the HTTP
request. This means that servlets need help from the server to handle
persistent connections. Consequently, the servlet’s job is just to make it
possible for the server to use persistent connections, which is done by
sending a Content-Length response header. Section 7.4 (Using Per-
sistent HTTP Connections) has a detailed example.

Content-Length
This header is only applicable to POST requests and gives the size of the
POST data in bytes. Rather than calling request.getIntHeader("Con-
tent-Length"), you can simply use request.getContentLength().
However, since servlets take care of reading the form data for you (see
Chapter 3, “Handling the Client Request: Form Data”), you are
unlikely to use this header explicitly.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.3 HTTP 1.1 Request Headers 101

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Content-Type

Although this header is usually used in responses from the server, it can
also be part of client requests when the client attaches a document as
the POST data or when making PUT requests. You can access this header
with the shorthand getContentType method of HttpServletRequest.

Cookie

This header is used to return cookies to servers that previously sent
them to the browser. For details, see Chapter 8 (Handling Cookies).
Technically, Cookie is not part of HTTP 1.1. It was originally a
Netscape extension but is now very widely supported, including in both
Netscape and Internet Explorer.

Expect

This rarely used header lets the client tell the server what kinds of
behaviors it expects. The one standard value for this header, 100-con-
tinue, is sent by a browser that will be sending an attached document
and wants to know if the server will accept it. The server should send a
status code of either 100 (Continue) or 417 (Expectation Failed) in
such a case. For more details on HTTP status codes, see Chapter 6
(Generating the Server Response: HTTP Status Codes).

From

This header gives the e-mail address of the person responsible for the
HTTP request. Browsers do not send this header, but Web spiders
(robots) often set it as a courtesy to help identify the source of server
overloading or repeated improper requests.

Host

Browsers are required to specify this header, which indicates the host
and port as given in the original URL. Due to request forwarding and
machines that have multiple hostnames, it is quite possible that the
server could not otherwise determine this information. This header is
not new in HTTP 1.1, but in HTTP 1.0 it was optional, not required.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

102 Chapter 4 Handling the Client Request: HTTP Request Headers

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
If-Match

This rarely used header applies primarily to PUT requests. The client
can supply a list of entity tags as returned by the ETag response header,
and the operation is performed only if one of them matches.

If-Modified-Since
This header indicates that the client wants the page only if it has been
changed after the specified date. This option is very useful because it
lets browsers cache documents and reload them over the network only
when they’ve changed. However, servlets don’t need to deal directly
with this header. Instead, they should just implement the getLastMod-
ified method to have the system handle modification dates automati-
cally. An illustration is given in Section 2.8 (An Example Using Servlet
Initialization and Page Modification Dates).

If-None-Match

This header is like If-Match, except that the operation should be per-
formed only if no entity tags match.

If-Range
This rarely used header lets a client that has a partial copy of a docu-
ment ask for either the parts it is missing (if unchanged) or an entire
new document (if it has changed since a specified date).

If-Unmodified-Since

This header is like If-Modified-Since in reverse, indicating that the
operation should succeed only if the document is older than the speci-
fied date. Typically, If-Modified-Since is used for GET requests (“give
me the document only if it is newer than my cached version”), whereas
If-Unmodified-Since is used for PUT requests (“update this docu-
ment only if nobody else has changed it since I generated it”).

Pragma

A Pragma header with a value of no-cache indicates that a servlet that
is acting as a proxy should forward the request even if it has a local copy.
The only standard value for this header is no-cache.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.3 HTTP 1.1 Request Headers 103

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Proxy-Authorization
This header lets clients identify themselves to proxies that require it.
Servlets typically ignore this header, using Authorization instead.

Range
This rarely used header lets a client that has a partial copy of a docu-
ment ask for only the parts it is missing.

Referer
This header indicates the URL of the referring Web page. For example,
if you are at Web page 1 and click on a link to Web page 2, the URL of
Web page 1 is included in the Referer header when the browser
requests Web page 2. All major browsers set this header, so it is a useful
way of tracking where requests came from. This capability is helpful for
tracking advertisers who refer people to your site, for changing content
slightly depending on the referring site, or simply for keeping track of
where your traffic comes from. In the last case, most people simply rely
on Web server log files, since the Referer is typically recorded there.
Although it’s useful, don’t rely too heavily on the Referer header since
it can be easily spoofed by a custom client. Finally, note that this header
is Referer, not the expected Referrer, due to a spelling mistake by one
of the original HTTP authors.

Upgrade
The Upgrade header lets the browser or other client specify a commu-
nication protocol it prefers over HTTP 1.1. If the server also supports
that protocol, both the client and the server can switch protocols. This
type of protocol negotiation is almost always performed before the serv-
let is invoked. Thus, servlets rarely care about this header.

User-Agent
This header identifies the browser or other client making the request
and can be used to return different content to different types of
browsers. Be wary of this usage, however; relying on a hard-coded list
of browser versions and associated features can make for unreliable
and hard-to-modify servlet code. Whenever possible, use something
specific in the HTTP headers instead. For example, instead of trying
to remember which browsers support gzip on which platforms, simply
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

104 Chapter 4 Handling the Client Request: HTTP Request Headers

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
check the Accept-Encoding header. Admittedly, this is not always
possible, but when it is not, you should ask yourself if the browser-spe-
cific feature you are using really adds enough value to be worth the
maintenance cost.

Most Internet Explorer versions list a “Mozilla” (Netscape) version first
in their User-Agent line, with the real browser version listed paren-
thetically. This is done for compatibility with JavaScript, where the
User-Agent header is sometimes used to determine which JavaScript
features are supported. Also note that this header can be easily spoofed,
a fact that calls into question the reliability of sites that use this header
to “show” market penetration of various browser versions. Hmm, mil-
lions of dollars in marketing money riding on statistics that could be
skewed by a custom client written in less than an hour, and I should take
those numbers as accurate ones?

Via
This header is set by gateways and proxies to show the intermediate
sites the request passed through.

Warning
This rarely used catchall header lets clients warn about caching or con-
tent transformation errors.

4.4 Sending Compressed Web
Pages

Several recent browsers know how to handle gzipped content, automatically
uncompressing documents that are marked with the Content-Encoding
header and then treating the result as though it were the original document.
Sending such compressed content can be a real timesaver, since the time
required to compress the document on the server and then uncompress it on
the client is typically dwarfed by the savings in download time, especially
when dialup connections are used.

Browsers that support content encoding include most versions of Netscape
for Unix, most versions of Internet Explorer for Windows, and Netscape 4.7
and later for Windows. Earlier Netscape versions on Windows and Internet
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.4 Sending Compressed Web Pages 105

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Explorer on non-Windows platforms generally do not support content encod-
ing. Fortunately, browsers that support this feature indicate that they do so
by setting the Accept-Encoding request header. Listing 4.2 shows a servlet
that checks this header, sending a compressed Web page to clients that sup-
port gzip encoding and sending a regular Web page to those that don’t. The
result showed a tenfold speedup for the compressed page when a dialup con-
nection was used. In repeated tests with Netscape 4.7 and Internet Explorer
5.0 on a 28.8K modem connection, the compressed page averaged less than 5
seconds to completely download, whereas the uncompressed page consis-
tently took more than 50 seconds.

Core Tip

Gzip compression can dramatically reduce the download time of long text
pages.

Implementing compression is straightforward since gzip format is built in
to the Java programming languages via classes in java.util.zip. The serv-
let first checks the Accept-Encoding header to see if it contains an entry for
gzip. If so, it uses a GZIPOutputStream to generate the page, specifying
gzip as the value of the Content-Encoding header. You must explicitly call
close when using a GZIPOutputStream. If gzip is not supported, the servlet
uses the normal PrintWriter to send the page. To make it easy to create
benchmarks with a single browser, I also added a feature whereby compres-
sion could be suppressed by including ?encoding=none at the end of the
URL.

DILBERT reprinted by permission of United Syndicate, Inc.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

106 Chapter 4 Handling the Client Request: HTTP Request Headers

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 4.2 EncodedPage.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.zip.*;

/** Example showing benefits of gzipping pages to browsers
 * that can handle gzip.
*/

public class EncodedPage extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 String encodings = request.getHeader("Accept-Encoding");
 String encodeFlag = request.getParameter("encoding");

 PrintWriter out;
 String title;
 if ((encodings != null) &&
 (encodings.indexOf("gzip") != -1) &&
 !"none".equals(encodeFlag)) {
 title = "Page Encoded with GZip";
 OutputStream out1 = response.getOutputStream();
 out = new PrintWriter(new GZIPOutputStream(out1), false);
 response.setHeader("Content-Encoding", "gzip");
 } else {
 title = "Unencoded Page";
 out = response.getWriter();
 }
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n");
 String line = "Blah, blah, blah, blah, blah. " +
 "Yadda, yadda, yadda, yadda.";
 for(int i=0; i<10000; i++) {
 out.println(line);
 }
 out.println("</BODY></HTML>");
 out.close();
 }
}

n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.5 Restricting Access to Web Pages 107

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

4.5 Restricting Access to Web
Pages

Many Web servers support standard mechanisms for limiting access to desig-
nated Web pages. These mechanisms can apply to static pages as well as
those generated by servlets, so many authors use their server-specific mecha-
nisms for restricting access to servlets. Furthermore, most users at e-com-
merce sites prefer to use regular HTML forms to provide authorization
information since these forms are more familiar, can provide more explana-
tory information, and can ask for additional information beyond just a user-
name and password. Once a servlet that uses form-based access grants initial
access to a user, it would use session tracking to give the user access to other
pages that require the same level of authorization. See Chapter 9 (Session
Tracking) for more information.

Nevertheless, form-based access control requires more effort on the part
of the servlet developer, and HTTP-based authorization is sufficient for many
simple applications. Here’s a summary of the steps involved for “basic” autho-
rization. There is also a slightly better variation called “digest” authorization,
but among the major browsers, only Internet Explorer supports it.

Figure 4–3 Since the Windows version of Internet Explorer 5.0 supports gzip, this
page was sent gzipped over the network and reconstituted by the browser, resulting in a
large saving in download time.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

108 Chapter 4 Handling the Client Request: HTTP Request Headers

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
1. Check whether there is an Authorization header. If there is
no such header, go to Step 2. If there is, skip over the word
“basic” and reverse the base64 encoding of the remaining part.
This results in a string of the form username:password. Check
the username and password against some stored set. If it
matches, return the page. If not, go to Step 2.

2. Return a 401 (Unauthorized) response code and a header of
the following form:
WWW-Authenticate: BASIC realm="some-name"

This response instructs the browser to pop up a dialog box tell-
ing the user to enter a name and password for some-name, then
to reconnect with that username and password embedded in a
single base64 string inside the Authorization header.

If you care about the details, base64 encoding is explained in RFC 1521
(remember, to retrieve RFCs, start at http://www.rfc-editor.org/ to
get a current list of the RFC archive sites). However, there are probably
only two things you need to know about it. First, it is not intended to pro-
vide security, as the encoding can be easily reversed. So, it does not obviate
the need for SSL to thwart attackers who might be able to snoop on your
network connection (no easy task unless they are on your local subnet).
SSL, or Secure Sockets Layer, is a variation of HTTP where the entire
stream is encrypted. It is supported by many commercial servers and is
generally invoked by using https in the URL instead of http. Servlets can
run on SSL servers just as easily as on standard servers, and the encryption
and decryption is handled transparently before the servlets are invoked.
The second point you should know about base64 encoding is that Sun pro-
vides the sun.misc.BASE64Decoder class, distributed with both JDK 1.1
and 1.2, to decode strings that were encoded with base64. Just be aware
that classes in the sun package hierarchy are not part of the official lan-
guage specification, and thus are not guaranteed to appear in all implemen-
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.5 Restricting Access to Web Pages 109

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

tations. So, if you use this decoder class, make sure that you explicitly
include the class file when you distribute your application.

Listing 4.3 presents a password-protected servlet. It is explicitly registered
with the Web server under the name SecretServlet. The process for regis-
tering servlets varies from server to server, but Section 2.7 (An Example
Using Initialization Parameters) gives details on the process for Tomcat, the
JSWDK and the Java Web Server. The reason the servlet is registered is so
that initialization parameters can be associated with it, since most servers
don’t let you set initialization parameters for servlets that are available merely
by virtue of being in the servlets (or equivalent) directory. The initializa-
tion parameter gives the location of a Java Properties file that stores user
names and passwords. If the security of the page was very important, you’d
want to encrypt the passwords so that access to the Properties file would
not equate to knowledge of the passwords.

In addition to reading the incoming Authorization header, the servlet
specifies a status code of 401 and sets the outgoing WWW-Authenticate
header. Status codes are discussed in detail in Chapter 6 (Generating the
Server Response: HTTP Status Codes), but for now, just note that they con-
vey high-level information to the browser and generally need to be set when-
ever the response is something other than the document requested. The
most common way to set status codes is through the use of the setStatus
method of HttpServletResponse, and you typically supply a constant
instead of an explicit integer in order to make your code clearer and to pre-
vent typographic errors.

WWW-Authenticate and other HTTP response headers are discussed in
Chapter 7 (Generating the Server Response: HTTP Response Headers), but
for now note that they convey auxiliary information to support the response
specified by the status code, and they are commonly set through use of the
setHeader method of HttpServletResponse.

Figures 4–4, 4–5, and 4–6 show the result when a user first tries to access
the page, after the user enters an unknown password, and after the user
enters a known password. Listing 4.4 gives the program that built the simple
password file.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

110 Chapter 4 Handling the Client Request: HTTP Request Headers

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 4.3 ProtectedPage.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.util.Properties;
import sun.misc.BASE64Decoder;

/** Example of password-protected pages handled directly
 * by servlets.
*/

public class ProtectedPage extends HttpServlet {
 private Properties passwords;
 private String passwordFile;

 /** Read the password file from the location specified
 * by the passwordFile initialization parameter.
 */

 public void init(ServletConfig config)
 throws ServletException {
 super.init(config);
 try {
 passwordFile = config.getInitParameter("passwordFile");
 passwords = new Properties();
 passwords.load(new FileInputStream(passwordFile));
 } catch(IOException ioe) {}
 }

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 String authorization = request.getHeader("Authorization");
 if (authorization == null) {
 askForPassword(response);
 } else {
 String userInfo = authorization.substring(6).trim();
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.5 Restricting Access to Web Pages 111

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

 BASE64Decoder decoder = new BASE64Decoder();
 String nameAndPassword =
 new String(decoder.decodeBuffer(userInfo));
 int index = nameAndPassword.indexOf(":");
 String user = nameAndPassword.substring(0, index);
 String password = nameAndPassword.substring(index+1);
 String realPassword = passwords.getProperty(user);
 if ((realPassword != null) &&
 (realPassword.equals(password))) {
 String title = "Welcome to the Protected Page";
 out.println(ServletUtilities.headWithTitle(title) +
 "<BODY BGCOLOR=\"#FDF5E6\">\n" +
 "<H1 ALIGN=CENTER>" + title + "</H1>\n" +
 "Congratulations. You have accessed a\n" +
 "highly proprietary company document.\n" +
 "Shred or eat all hardcopies before\n" +
 "going to bed tonight.\n" +
 "</BODY></HTML>");
 } else {
 askForPassword(response);
 }
 }
 }

 // If no Authorization header was supplied in the request.

 private void askForPassword(HttpServletResponse response) {
 response.setStatus(response.SC_UNAUTHORIZED); // Ie 401
 response.setHeader("WWW-Authenticate",
 "BASIC realm=\"privileged-few\"");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 4.3 ProtectedPage.java (continued)
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

112 Chapter 4 Handling the Client Request: HTTP Request Headers

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 4–4 Initial result when accessing SecretServlet (the registered name for
the ProtectedPage servlet).

Figure 4–5 Result after entering incorrect name or password.

Figure 4–6 Result after entering known name and password.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

4.5 Restricting Access to Web Pages 113

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Listing 4.4 PasswordBuilder.java

import java.util.*;
import java.io.*;

/** Application that writes a simple Java properties file
 * containing usernames and associated passwords.
*/

public class PasswordBuilder {
 public static void main(String[] args) throws Exception {
 Properties passwords = new Properties();
 passwords.put("marty", "martypw");
 passwords.put("bj", "bjpw");
 passwords.put("lindsay", "lindsaypw");
 passwords.put("nathan", "nathanpw");
 // This location should *not* be Web-accessible.
 String passwordFile =
 "C:\\JavaWebServer2.0\\data\\passwords.properties";
 FileOutputStream out = new FileOutputStream(passwordFile);
 // Using JDK 1.1 for portability among all servlet
 // engines. In JDK 1.2, use "store" instead of "save"
 // to avoid deprecation warnings.
 passwords.save(out, "Passwords");
 }
}

econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

	Handling the Client Request: HTTP�Request Headers
	Topics in This Chapter
	4
	O

	4.1� Reading Request Headers from Servlets
	4.2� Printing All Headers
	Figure 4–1 Request headers sent by Netscape 4.7 on Windows 98.
	Figure 4–2 Request headers sent by Internet Explorer 5 on Windows 98.

	4.3� HTTP 1.1 Request Headers
	Accept
	Accept-Charset
	Accept-Encoding
	Accept-Language
	Authorization
	Cache-Control
	Connection
	Content-Length
	Content-Type
	Cookie
	Expect
	From
	Host
	If-Match
	If-Modified-Since
	If-None-Match
	If-Range
	If-Unmodified-Since
	Pragma
	Proxy-Authorization
	Range
	Referer
	Upgrade
	User-Agent
	Via
	Warning

	4.4� Sending Compressed Web Pages
	Figure 4–3 Since the Windows version of Internet Explorer 5.0 supports gzip, this page was sent g...

	4.5� Restricting Access to Web Pages
	1. Check whether there is an Authorization header. If there is no such header, go to Step 2. If t...
	2. Return a 401 (Unauthorized) response code and a header of the following form: WWW-Authenticate...
	Figure 4–4 Initial result when accessing SecretServlet (the registered name for the ProtectedPage...
	Figure 4–5 Result after entering incorrect name or password.
	Figure 4–6 Result after entering known name and password.

