
© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Generating the
Server Response:

HTTP Status
Codes
Topics in This Chapter

• The purpose of HTTP status codes

• The way to specify status codes from servlets

• The meaning of each of the HTTP 1.1 status code values

• A servlet that uses status codes to redirect users to other
sites and to report errors
Online version of this first edition of Core Servlets and JavaServer Pages is
free for personal use. For more information, please see:

• Second edition of the book:
http://www.coreservlets.com.

• Sequel:
http://www.moreservlets.com.

• Servlet and JSP training courses from the author:
http://courses.coreservlets.com.

Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
hen a Web server responds to a request from a browser or other
Web client, the response typically consists of a status line, some
response headers, a blank line, and the document. Here is a

minimal example:
HTTP/1.1 200 OK
Content-Type: text/plain

Hello World

The status line consists of the HTTP version (HTTP/1.1 in the example
above), a status code (an integer; 200 in the above example), and a very short
message corresponding to the status code (OK in the example). In most cases,
all of the headers are optional except for Content-Type, which specifies the
MIME type of the document that follows. Although most responses contain a
document, some don’t. For example, responses to HEAD requests should
never include a document, and there are a variety of status codes that essen-
tially indicate failure and either don’t include a document or include only a
short error message document.

Servlets can perform a variety of important tasks by manipulating the sta-
tus line and the response headers. For example, they can forward the user to
other sites; indicate that the attached document is an image, Adobe Acrobat
file, or HTML file; tell the user that a password is required to access the doc-
ument; and so forth. This chapter discusses the various status codes and what

W

123

124 Chapter 6 Generating the Server Response: HTTP Status Codes

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
can be accomplished with them, and the following chapter discusses the
response headers.

6.1 Specifying Status Codes

As just described, the HTTP response status line consists of an HTTP ver-
sion, a status code, and an associated message. Since the message is directly
associated with the status code and the HTTP version is determined by the
server, all a servlet needs to do is to set the status code. The way to do this is
by the setStatus method of HttpServletResponse. If your response
includes a special status code and a document, be sure to call setStatus
before actually returning any of the content via the PrintWriter. That’s
because an HTTP response consists of the status line, one or more headers,
a blank line, and the actual document, in that order. The headers can
appear in any order, and servlets buffer the headers and send them all at
once, so it is legal to set the status code (part of the first line returned) even
after setting headers. But servlets do not necessarily buffer the document
itself, since users might want to see partial results for long pages. In version
2.1 of the servlet specification, the PrintWriter output is not buffered at
all, so the first time you use the PrintWriter, it is too late to go back and
set headers. In version 2.2, servlet engines are permitted to partially buffer
the output, but the size of the buffer is left unspecified. You can use the
getBufferSize method of HttpServletResponse to determine the size,
or use setBufferSize to specify it. In version 2.2 with buffering enabled,
you can set status codes until the buffer fills up and is actually sent to the
client. If you aren’t sure if the buffer has been sent, you can use the isCom-
mitted method to check.

Core Approach

Be sure to set status codes before sending any document content to the
client.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.1 Specifying Status Codes 125

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

The setStatus method takes an int (the status code) as an argument,
but instead of using explicit numbers, it is clearer and more reliable to use
the constants defined in HttpServletResponse. The name of each con-
stant is derived from the standard HTTP 1.1 message for each constant, all
uppercase with a prefix of SC (for Status Code) and spaces changed to
underscores. Thus, since the message for 404 is “Not Found,” the equiva-
lent constant in HttpServletResponse is SC_NOT_FOUND. In version 2.1 of
the servlet specification, there are three exceptions. The constant for code
302 is derived from the HTTP 1.0 message (Moved Temporarily), not the
HTTP 1.1 message (Found), and the constants for codes 307 (Temporary
Redirect) and 416 (Requested Range Not Satisfiable) are missing alto-
gether. Version 2.2 added the constant for 416, but the inconsistencies for
307 and 302 remain.

Although the general method of setting status codes is simply to call
response.setStatus(int), there are two common cases where a shortcut
method in HttpServletResponse is provided. Just be aware that both of
these methods throw IOException, whereas setStatus doesn’t.

• public void sendError(int code, String message)

The sendError method sends a status code (usually 404) along
with a short message that is automatically formatted inside an
HTML document and sent to the client.

• public void sendRedirect(String url)

The sendRedirect method generates a 302 response along
with a Location header giving the URL of the new document.
With servlets version 2.1, this must be an absolute URL. In
version 2.2, either an absolute or a relative URL is permitted
and the system automatically translates relative URLs into
absolute ones before putting them in the Location header.

Setting a status code does not necessarily mean that you don’t need to
return a document. For example, although most servers automatically gener-
ate a small “File Not Found” message for 404 responses, a servlet might want
to customize this response. Remember that if you do send output, you have
to call setStatus or sendError first.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

126 Chapter 6 Generating the Server Response: HTTP Status Codes

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
6.2 HTTP 1.1 Status Codes and
Their Purpose

The following sections describe each of the status codes available for use in
servlets talking to HTTP 1.1 clients, along with the standard message associ-
ated with each code. A good understanding of these codes can dramatically
increase the capabilities of your servlets, so you should at least skim the
descriptions to see what options are at your disposal. You can come back to
get details when you are ready to make use of some of the capabilities. Note
that Appendix A (Servlet and JSP Quick Reference) presents a brief summary
of these codes in tabular format.

The complete HTTP 1.1 specification is given in RFC 2616, which you can
access on-line by going to http://www.rfc-editor.org/ and following the
links to the latest RFC archive sites. Codes that are new in HTTP 1.1 are
noted, since many browsers support only HTTP 1.0. You should only send
the new codes to clients that support HTTP 1.1, as verified by checking
request.getRequestProtocol.

The rest of this section describes the specific status codes available in
HTTP 1.1. These codes fall into five general categories:

• 100-199
Codes in the 100s are informational, indicating that the client
should respond with some other action.

• 200-299
Values in the 200s signify that the request was successful.

• 300-399
Values in the 300s are used for files that have moved and usually
include a Location header indicating the new address.

• 400-499
Values in the 400s indicate an error by the client.

• 500-599
Codes in the 500s signify an error by the server.

The constants in HttpServletResponse that represent the various codes
are derived from the standard messages associated with the codes. In serv-
lets, you usually refer to status codes only by means of these constants. For
example, you would use response.setSta-

tus(response.SC_NO_CONTENT) rather than response.setStatus(204),
since the latter is unclear to readers and is prone to typographical errors.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.2 HTTP 1.1 Status Codes and Their Purpose 127

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

However, you should note that servers are allowed to vary the messages
slightly, and clients pay attention only to the numeric value. So, for example,
you might see a server return a status line of HTTP/1.1 200 Document Fol-
lows instead of HTTP/1.1 200 OK.

100 (Continue)

If the server receives an Expect request header with a value of
100-continue, it means that the client is asking if it can send an
attached document in a follow-up request. In such a case, the server
should either respond with status 100 (SC_CONTINUE) to tell the client
to go ahead or use 417 (Expectation Failed) to tell the browser it
won’t accept the document. This status code is new in HTTP 1.1.

101 (Switching Protocols)

A 101 (SC_SWITCHING_PROTOCOLS) status indicates that the server will
comply with the Upgrade header and change to a different protocol.
This status code is new in HTTP 1.1.

200 (OK)

A value of 200 (SC_OK) means that everything is fine. The document fol-
lows for GET and POST requests. This status is the default for servlets; if
you don’t use setStatus, you’ll get 200.

201 (Created)

A status code of 201 (SC_CREATED) signifies that the server created a
new document in response to the request; the Location header should
give its URL.

202 (Accepted)

A value of 202 (SC_ACCEPTED) tells the client that the request is being
acted upon, but processing is not yet complete.

203 (Non-Authoritative Information)

A 203 (SC_NON_AUTHORITATIVE_INFORMATION) status signifies that the
document is being returned normally, but some of the response headers
might be incorrect since a document copy is being used. This status
code is new in HTTP 1.1.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

128 Chapter 6 Generating the Server Response: HTTP Status Codes

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
204 (No Content)
A status code of 204 (SC_NO_CONTENT) stipulates that the browser
should continue to display the previous document because no new doc-
ument is available. This behavior is useful if the user periodically
reloads a page by pressing the “Reload” button, and you can determine
that the previous page is already up-to-date. For example, a servlet
might do something like this:

int pageVersion =

Integer.parseInt(request.getParameter("pageVersion"));

if (pageVersion >= currentVersion) {

response.setStatus(response.SC_NO_CONTENT);

} else {

// Create regular page

}

However, this approach does not work for pages that are automatically
reloaded via the Refresh response header or the equivalent <META
HTTP-EQUIV="Refresh" ...> HTML entry, since returning a 204 sta-
tus code stops future reloading. JavaScript-based automatic reloading
could still work in such a case, though. See the discussion of Refresh in
Section 7.2 (HTTP 1.1 Response Headers and Their Meaning) for
details.

205 (Reset Content)
A value of 205 (SC_RESET_CONTENT) means that there is no new docu-
ment, but the browser should reset the document view. This status
code is used to force browsers to clear form fields. It is new in HTTP
1.1.

206 (Partial Content)
A status code of 206 (SC_PARTIAL_CONTENT) is sent when the server
fulfills a partial request that includes a Range header. This value is new
in HTTP 1.1.

300 (Multiple Choices)
A value of 300 (SC_MULTIPLE_CHOICES) signifies that the requested
document can be found several places, which will be listed in the
returned document. If the server has a preferred choice, it should be
listed in the Location response header.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.2 HTTP 1.1 Status Codes and Their Purpose 129

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

301 (Moved Permanently)
The 301 (SC_MOVED_PERMANENTLY) status indicates that the requested
document is elsewhere; the new URL for the document is given in the
Location response header. Browsers should automatically follow the
link to the new URL.

302 (Found)
This value is similar to 301, except that the URL given by the Location
header should be interpreted as a temporary replacement, not a perma-
nent one. Note: in HTTP 1.0, the message was Moved Temporarily
instead of Found, and the constant in HttpServletResponse is
SC_MOVED_TEMPORARILY, not the expected SC_FOUND.

Core Note

The constant representing 302 is SC_MOVED_TEMPORARILY, not
SC_FOUND.

Status code 302 is very useful because browsers automatically follow
the reference to the new URL given in the Location response header.
It is so useful, in fact, that there is a special method for it, sendRedi-
rect. Using response.sendRedirect(url) has a couple of advan-
tages over using
response.setStatus(response.SC_MOVED_TEMPORARILY) and
response.setHeader("Location", url). First, it is shorter and
easier. Second, with sendRedirect, the servlet automatically builds a
page containing the link to show to older browsers that don’t automat-
ically follow redirects. Finally, with version 2.2 of servlets (the version
in J2EE), sendRedirect can handle relative URLs, automatically
translating them into absolute ones. You must use an absolute URL in
version 2.1, however.
If you redirect the user to another page within your own site, you should
pass the URL through the encodeURL method of HttpServletRe-
sponse. Doing so is a simple precaution in case you ever use session
tracking based on URL-rewriting. URL-rewriting is a way to track users
who have cookies disabled while they are at your site. It is implemented
by adding extra path information to the end of each URL, but the serv-
let session-tracking API takes care of the details automatically. Session
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

130 Chapter 6 Generating the Server Response: HTTP Status Codes

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
tracking is discussed in Chapter 9, and it is a good idea to use enco-
deURL routinely so that you can add session tracking at a later time with
minimal changes to the code.

Core Approach

If you redirect users to a page within your site, plan ahead for session
tracking by using
response.sendRedirect(response.encodeURL(url)),
rather than just
response.sendRedirect(url).

This status code is sometimes used interchangeably with 301. For exam-
ple, if you erroneously ask for http://host/~user (missing the trailing
slash), some servers will reply with a 301 code while others will use 302.

Technically, browsers are only supposed to automatically follow the
redirection if the original request was GET. For details, see the discus-
sion of the 307 status code.

303 (See Other)

The 303 (SC_SEE_OTHER) status is similar to 301 and 302, except that
if the original request was POST, the new document (given in the
Location header) should be retrieved with GET. This code is new in
HTTP 1.1.

304 (Not Modified)

When a client has a cached document, it can perform a conditional
request by supplying an If-Modified-Since header to indicate that it
only wants the document if it has been changed since the specified date.
A value of 304 (SC_NOT_MODIFIED) means that the cached version is
up-to-date and the client should use it. Otherwise, the server should
return the requested document with the normal (200) status code. Serv-
lets normally should not set this status code directly. Instead, they
should implement the getLastModified method and let the default
service method handle conditional requests based upon this modifica-
tion date. An example of this approach is given in Section 2.8 (An Exam-
ple Using Servlet Initialization and Page Modification Dates).
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.2 HTTP 1.1 Status Codes and Their Purpose 131

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

305 (Use Proxy)

A value of 305 (SC_USE_PROXY) signifies that the requested document
should be retrieved via the proxy listed in the Location header. This
status code is new in HTTP 1.1.

307 (Temporary Redirect)

The rules for how a browser should handle a 307 status are identical to
those for 302. The 307 value was added to HTTP 1.1 since many brows-
ers erroneously follow the redirection on a 302 response even if the
original message is a POST. Browsers are supposed to follow the redirec-
tion of a POST request only when they receive a 303 response status.
This new status is intended to be unambiguously clear: follow redi-
rected GET and POST requests in the case of 303 responses; follow redi-
rected GET but not POST requests in the case of 307 responses. Note:
For some reason there is no constant in HttpServletResponse corre-
sponding to this status code. This status code is new in HTTP 1.1.

Core Note

There is no SC_TEMPORARY_REDIRECT constant in
HttpServletResponse, so you have to use 307 explicitly.

400 (Bad Request)

A 400 (SC_BAD_REQUEST) status indicates bad syntax in the client
request.

401 (Unauthorized)

A value of 401 (SC_UNAUTHORIZED) signifies that the client tried to
access a password-protected page without proper identifying informa-
tion in the Authorization header. The response must include a
WWW-Authenticate header. For an example, see Section 4.5, “Restrict-
ing Access to Web Pages.”

403 (Forbidden)

A status code of 403 (SC_FORBIDDEN) means that the server refuses to
supply the resource, regardless of authorization. This status is often the
result of bad file or directory permissions on the server.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

132 Chapter 6 Generating the Server Response: HTTP Status Codes

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
404 (Not Found)

The infamous 404 (SC_NOT_FOUND) status tells the client that no
resource could be found at that address. This value is the standard “no
such page” response. It is such a common and useful response that
there is a special method for it in the HttpServletResponse class:
sendError("message"). The advantage of sendError over setSta-
tus is that, with sendError, the server automatically generates an error
page showing the error message. Unfortunately, however, the default
behavior of Internet Explorer 5 is to ignore the error page you send
back and displays its own, even though doing so contradicts the HTTP
specification. To turn off this setting, go to the Tools menu, select Inter-
net Options, choose the Advanced tab, and make sure “Show friendly
HTTP error messages” box is not checked. Unfortunately, however, few
users are aware of this setting, so this “feature” prevents most users of
Internet Explorer version 5 from seeing any informative messages you
return. Other major browsers and version 4 of Internet Explorer prop-
erly display server-generated error pages. See Figures 6–3 and 6–4 for
an example.

Core Warning

By default, Internet Explorer version 5 ignores server-generated error pages.

405 (Method Not Allowed)

A 405 (SC_METHOD_NOT_ALLOWED) value indicates that the request
method (GET, POST, HEAD, PUT, DELETE, etc.) was not allowed for this
particular resource. This status code is new in HTTP 1.1.

406 (Not Acceptable)

A value of 406 (SC_NOT_ACCEPTABLE) signifies that the requested
resource has a MIME type incompatible with the types specified
by the client in its Accept header. See Table 7.1 in Section 7.2
(HTTP 1.1 Response Headers and Their Meaning) for the names
and meanings of the common MIME types. The 406 value is new in
HTTP 1.1.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.2 HTTP 1.1 Status Codes and Their Purpose 133

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

407 (Proxy Authentication Required)
The 407 (SC_PROXY_AUTHENTICATION_REQUIRED) value is similar
to 401, but it is used by proxy servers. It indicates that the client must
authenticate itself with the proxy server. The proxy server returns a
Proxy-Authenticate response header to the client, which results
in the browser reconnecting with a Proxy-Authorization request
header. This status code is new in HTTP 1.1.

408 (Request Timeout)
The 408 (SC_REQUEST_TIMEOUT) code means that the client took too
long to finish sending the request. It is new in HTTP 1.1.

409 (Conflict)
Usually associated with PUT requests, the 409 (SC_CONFLICT) status is
used for situations such as an attempt to upload an incorrect version of a
file. This status code is new in HTTP 1.1.

410 (Gone)
A value of 410 (SC_GONE) tells the client that the requested document
is gone and no forwarding address is known. Status 410 differs from
404 in that the document is known to be permanently gone, not just
unavailable for unknown reasons, as with 404. This status code is new
in HTTP 1.1.

411 (Length Required)
A status of 411 (SC_LENGTH_REQUIRED) signifies that the server cannot
process the request (assumedly a POST request with an attached docu-
ment) unless the client sends a Content-Length header indicating the
amount of data being sent to the server. This value is new in HTTP 1.1.

412 (Precondition Failed)
The 412 (SC_PRECONDITION_FAILED) status indicates that some pre-
condition specified in the request headers was false. It is new in HTTP
1.1.

413 (Request Entity Too Large)
A status code of 413 (SC_REQUEST_ENTITY_TOO_LARGE) tells the client
that the requested document is bigger than the server wants to handle
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

134 Chapter 6 Generating the Server Response: HTTP Status Codes

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
now. If the server thinks it can handle it later, it should include a
Retry-After response header. This value is new in HTTP 1.1.

414 (Request URI Too Long)
The 414 (SC_REQUEST_URI_TOO_LONG) status is used when the URI is
too long. In this context, “URI” means the part of the URL that came
after the host and port in the URL. For example, in
http://www.y2k-disaster.com:8080/we/look/silly/now/, the
URI is /we/look/silly/now/. This status code is new in HTTP 1.1.

415 (Unsupported Media Type)
A value of 415 (SC_UNSUPPORTED_MEDIA_TYPE) means that the request
had an attached document of a type the server doesn’t know how to
handle. This status code is new in HTTP 1.1.

416 (Requested Range Not Satisfiable)
A status code of 416 signifies that the client included an unsatisfiable
Range header in the request. This value is new in HTTP 1.1. Surpris-
ingly, the constant that corresponds to this value was omitted from
HttpServletResponse in version 2.1 of the servlet API.

Core Note

In version 2.1 of the servlet specification, there is no
SC_REQUESTED_RANGE_NOT_SATISFIABLE constant in
HttpServletResponse, so you have to use 416 explicitly. The constant
is available in version 2.2 and later.

417 (Expectation Failed)
If the server receives an Expect request header with a value of
100-continue, it means that the client is asking if it can send an
attached document in a follow-up request. In such a case, the server
should either respond with this status (417) to tell the browser it won’t
accept the document or use 100 (SC_CONTINUE) to tell the client to go
ahead. This status code is new in HTTP 1.1.

500 (Internal Server Error)
500 (SC_INTERNAL_SERVER_ERROR) is the generic “server is confused”
status code. It often results from CGI programs or (heaven forbid!)
servlets that crash or return improperly formatted headers.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.3 A Front End to Various Search Engines 135

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

501 (Not Implemented)
The 501 (SC_NOT_IMPLEMENTED) status notifies the client that the
server doesn’t support the functionality to fulfill the request. It is used,
for example, when the client issues a command like PUT that the server
doesn’t support.

502 (Bad Gateway)
A value of 502 (SC_BAD_GATEWAY) is used by servers that act as proxies
or gateways; it indicates that the initial server got a bad response from
the remote server.

503 (Service Unavailable)
A status code of 503 (SC_SERVICE_UNAVAILABLE) signifies that the
server cannot respond because of maintenance or overloading. For
example, a servlet might return this header if some thread or database
connection pool is currently full. The server can supply a Retry-After
header to tell the client when to try again.

504 (Gateway Timeout)
A value of 504 (SC_GATEWAY_TIMEOUT) is used by servers that act as
proxies or gateways; it indicates that the initial server didn’t get a timely
response from the remote server. This status code is new in HTTP 1.1.

505 (HTTP Version Not Supported)
The 505 (SC_HTTP_VERSION_NOT_SUPPORTED) code means that the
server doesn’t support the version of HTTP named in the request line.
This status code is new in HTTP 1.1.

6.3 A Front End to Various Search
Engines

Listing 6.1 presents an example that makes use of the two most common sta-
tus codes other than 200 (OK): 302 (Found) and 404 (Not Found). The 302
code is set by the shorthand sendRedirect method of HttpServletRe-
sponse, and 404 is specified by sendError.

In this application, an HTML form (see Figure 6–1 and the source code in
Listing 6.3) first displays a page that lets the user choose a search string, the
number of results to show per page, and the search engine to use. When the
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

136 Chapter 6 Generating the Server Response: HTTP Status Codes

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
form is submitted, the servlet extracts those three parameters, constructs a
URL with the parameters embedded in a way appropriate to the search
engine selected (see the SearchSpec class of Listing 6.2), and redirects the
user to that URL (see Figure 6–2). If the user fails to choose a search engine
or specify search terms, an error page informs the client of this fact (see Fig-
ures 6–3 and 6–4).
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.3 A Front End to Various Search Engines 137

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Listing 6.1 SearchEngines.java

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.net.*;

/** Servlet that takes a search string, number of results per
 * page, and a search engine name, sending the query to
 * that search engine. Illustrates manipulating
 * the response status line. It sends a 302 response
 * (via sendRedirect) if it gets a known search engine,
 * and sends a 404 response (via sendError) otherwise.
 */

public class SearchEngines extends HttpServlet {
 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 String searchString = request.getParameter("searchString");
 if ((searchString == null) ||
 (searchString.length() == 0)) {
 reportProblem(response, "Missing search string.");
 return;

 }
 // The URLEncoder changes spaces to "+" signs and other
 // non-alphanumeric characters to "%XY", where XY is the
 // hex value of the ASCII (or ISO Latin-1) character.
 // Browsers always URL-encode form values, so the
 // getParameter method decodes automatically. But since
 // we’re just passing this on to another server, we need to
 // re-encode it.
 searchString = URLEncoder.encode(searchString);
 String numResults =
 request.getParameter("numResults");
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

138 Chapter 6 Generating the Server Response: HTTP Status Codes

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
 if ((numResults == null) ||
 (numResults.equals("0")) ||
 (numResults.length() == 0)) {
 numResults = "10";
 }
 String searchEngine =
 request.getParameter("searchEngine");
 if (searchEngine == null) {
 reportProblem(response, "Missing search engine name.");
 return;
 }
 SearchSpec[] commonSpecs = SearchSpec.getCommonSpecs();
 for(int i=0; i<commonSpecs.length; i++) {
 SearchSpec searchSpec = commonSpecs[i];
 if (searchSpec.getName().equals(searchEngine)) {
 String url =
 searchSpec.makeURL(searchString, numResults);
 response.sendRedirect(url);
 return;
 }
 }
 reportProblem(response, "Unrecognized search engine.");
 }

 private void reportProblem(HttpServletResponse response,
 String message)
 throws IOException {
 response.sendError(response.SC_NOT_FOUND,
 "<H2>" + message + "</H2>");
 }

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
 }
}

Listing 6.1 SearchEngines.java (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.3 A Front End to Various Search Engines 139

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Listing 6.2 SearchSpec.java

package coreservlets;

/** Small class that encapsulates how to construct a
 * search string for a particular search engine.
 */

class SearchSpec {
 private String name, baseURL, numResultsSuffix;

 private static SearchSpec[] commonSpecs =
 { new SearchSpec("google",
 "http://www.google.com/search?q=",
 "&num="),
 new SearchSpec("infoseek",
 "http://infoseek.go.com/Titles?qt=",
 "&nh="),
 new SearchSpec("lycos",
 "http://lycospro.lycos.com/cgi-bin/" +
 "pursuit?query=",
 "&maxhits="),
 new SearchSpec("hotbot",
 "http://www.hotbot.com/?MT=",
 "&DC=")
 };

 public SearchSpec(String name,
 String baseURL,
 String numResultsSuffix) {
 this.name = name;
 this.baseURL = baseURL;
 this.numResultsSuffix = numResultsSuffix;
 }

 public String makeURL(String searchString,
 String numResults) {
 return(baseURL + searchString +
 numResultsSuffix + numResults);
 }

 public String getName() {
 return(name);
 }

 public static SearchSpec[] getCommonSpecs() {
 return(commonSpecs);
 }
}

econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

140 Chapter 6 Generating the Server Response: HTTP Status Codes

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Figure 6–1 Front end to the SearchEngines servlet. See Listing 6.3 for the HTML
source code.

Figure 6–2 Result of the SearchEngines servlet when the form of Figure 6–1 is
submitted.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.3 A Front End to Various Search Engines 141

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Figure 6–3 Result of SearchEngines servlet when no search string was specified.
Internet Explorer 5 displays its own error page, even though the servlet generates one.

Figure 6–4 Result of SearchEngines servlet when no search string was specified.
Netscape correctly displays the servlet-generated error page.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

142 Chapter 6 Generating the Server Response: HTTP Status Codes

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 6.3 SearchEngines.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
<HEAD>
 <TITLE>Searching the Web</TITLE>
</HEAD>

<BODY BGCOLOR="#FDF5E6">
<H1 ALIGN="CENTER">Searching the Web</H1>

<FORM ACTION="/servlet/coreservlets.SearchEngines">
 <CENTER>
 Search String:
 <INPUT TYPE="TEXT" NAME="searchString">

 Results to Show Per Page:
 <INPUT TYPE="TEXT" NAME="numResults"
 VALUE=10 SIZE=3>

 <INPUT TYPE="RADIO" NAME="searchEngine"
 VALUE="google">
 Google |
 <INPUT TYPE="RADIO" NAME="searchEngine"
 VALUE="infoseek">
 Infoseek |
 <INPUT TYPE="RADIO" NAME="searchEngine"
 VALUE="lycos">
 Lycos |
 <INPUT TYPE="RADIO" NAME="searchEngine"
 VALUE="hotbot">
 HotBot

 <INPUT TYPE="SUBMIT" VALUE="Search">
 </CENTER>
</FORM>

</BODY>
</HTML>
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.

6.3 A Front End to Various Search Engines 143

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.

	Generating the Server Response: HTTP�Status Codes
	Topics in This Chapter
	6
	W
	6.1� Specifying Status Codes
	6.2� HTTP 1.1 Status Codes and Their Purpose
	100 (Continue)
	101 (Switching Protocols)
	200 (OK)
	201 (Created)
	202 (Accepted)
	203 (Non-Authoritative Information)
	204 (No Content)
	205 (Reset Content)
	206 (Partial Content)
	300 (Multiple Choices)
	301 (Moved Permanently)
	302 (Found)
	303 (See Other)
	304 (Not Modified)
	305 (Use Proxy)
	307 (Temporary Redirect)
	400 (Bad Request)
	401 (Unauthorized)
	403 (Forbidden)
	404 (Not Found)
	405 (Method Not Allowed)
	406 (Not Acceptable)
	407 (Proxy Authentication Required)
	408 (Request Timeout)
	409 (Conflict)
	410 (Gone)
	411 (Length Required)
	412 (Precondition Failed)
	413 (Request Entity Too Large)
	414 (Request URI Too Long)
	415 (Unsupported Media Type)
	416 (Requested Range Not Satisfiable)
	417 (Expectation Failed)
	500 (Internal Server Error)
	501 (Not Implemented)
	502 (Bad Gateway)
	503 (Service Unavailable)
	504 (Gateway Timeout)
	505 (HTTP Version Not Supported)

	6.3� A Front End to Various Search Engines
	Figure 6–1 Front end to the SearchEngines servlet. See Listing 6.3 for the HTML source code.
	Figure 6–2 Result of the SearchEngines servlet when the form of Figure 6–1 is submitted.
	Figure 6–3 Result of SearchEngines servlet when no search string was specified. Internet Explorer...
	Figure 6–4 Result of SearchEngines servlet when no search string was specified. Netscape correctl...

