
© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Chapter

Handling 
Cookies
Topics in This Chapter

• Purposes for cookies

• Problems with cookies

• The Cookie API

• A simple servlet that sets cookies

• A cookie-reporting servlet

• Some utilities that simplify cookie handling

• A customized search engine front end based upon cookies
Online version of this first edition of Core Servlets and JavaServer Pages is 
free for personal use. For more information, please see:

• Second edition of the book: 
http://www.coreservlets.com.

• Sequel: 
http://www.moreservlets.com.

• Servlet and JSP training courses from the author: 
http://courses.coreservlets.com.



Chapter

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
ookies are small bits of textual information that a Web server sends to
a browser and that the browser returns unchanged when later visiting
the same Web site or domain. By letting the server read information

it sent the client previously, the site can provide visitors with a number of
conveniences such as presenting the site the way the visitor previously cus-
tomized it or letting identifiable visitors in without their having to enter a
password. Most browsers avoid caching documents associated with cookies,
so the site can return different content each time. 

This chapter discusses how to explicitly set and read cookies from within
servlets, and the next chapter shows you how to use the servlet session track-
ing API (which can use cookies behind the scenes) to keep track of users as
they move around to different pages within your site.

8.1 Benefits of Cookies

This section summarizes four typical ways in which cookies can add value to
your site.

C

179



180 Chapter 8 Handling Cookies

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Identifying a User During an E-commerce 
Session

Many on-line stores use a “shopping cart” metaphor in which the user selects
an item, adds it to his shopping cart, then continues shopping. Since the
HTTP connection is usually closed after each page is sent, when the user
selects a new item to add to the cart, how does the store know that it is the
same user that put the previous item in the cart? Persistent (keep-alive)
HTTP connections (see Section 7.4) do not solve this problem, since persis-
tent connections generally apply only to requests made very close together in
time, as when a browser asks for the images associated with a Web page.
Besides, many servers and browsers lack support for persistent connections.
Cookies, however, can solve this problem. In fact, this capability is so useful
that servlets have an API specifically for session tracking, and servlet authors
don’t need to manipulate cookies directly to take advantage of it. Session
tracking is discussed in Chapter 9.

Avoiding Username and Password

Many large sites require you to register in order to use their services, but it is
inconvenient to remember and enter the username and password each time
you visit. Cookies are a good alternative for low-security sites. When a user
registers, a cookie containing a unique user ID is sent to him. When the cli-
ent reconnects at a later date, the user ID is returned, the server looks it up,
determines it belongs to a registered user, and permits access without an
explicit username and password. The site may also remember the user’s
address, credit card number, and so forth, thus simplifying later transactions.

Customizing a Site

Many “portal” sites let you customize the look of the main page. They might
let you pick which weather report you want to see, what stock and sports
results you care about, how search results should be displayed, and so forth.
Since it would be inconvenient for you to have to set up your page each time
you visit their site, they use cookies to remember what you wanted. For sim-
ple settings, this customization could be accomplished by storing the page
settings directly in the cookies. Section 8.6 gives an example of this. For more
complex customization, however, the site just sends the client a unique iden-
tifier and keeps a server-side database that associates identifiers with page
settings. 
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.



8.2 Some Problems with Cookies 181

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Focusing Advertising

Most advertiser-funded Web sites charge their advertisers much more for
displaying “directed” ads than “random” ads. Advertisers are generally willing
to pay much more to have their ads shown to people that are known to have
some interest in the general product category. For example, if you go to a
search engine and do a search on “Java Servlets,” the search site can charge
an advertiser much more for showing you an ad for a servlet development
environment than for an ad for an on-line travel agent specializing in Indone-
sia. On the other hand, if the search had been for “Java Hotels,” the situation
would be reversed. Without cookies, the sites have to show a random ad
when you first arrive and haven’t yet performed a search, as well as when you
search on something that doesn’t match any ad categories. Cookies let them
remember “Oh, that’s the person who was searching for such and such previ-
ously” and display an appropriate (read “high priced”) ad instead of a random
(read “cheap”) one. 

8.2 Some Problems with Cookies

Providing convenience to the user and added value to the site owner is the
purpose behind cookies. And despite much misinformation, cookies are not a
serious security threat. Cookies are never interpreted or executed in any way
and thus cannot be used to insert viruses or attack your system. Furthermore,
since browsers generally only accept 20 cookies per site and 300 cookies total
and since each cookie can be limited to 4 kilobytes, cookies cannot be used to
fill up someone’s disk or launch other denial of service attacks. 

However, even though cookies don’t present a serious security threat, they
can present a significant threat to privacy. First, some people don’t like the
fact that search engines can remember that they’re the user who usually does
searches on certain topics. For example, they might search for job openings
or sensitive health data and don’t want some banner ad tipping off their
coworkers next time they do a search. Even worse, two sites can share data on
a user by each loading small images off the same third-party site, where that
third party uses cookies and shares the data with both original sites.
(Netscape, however, provides a nice feature that lets you refuse cookies from
sites other than that to which you connected, but without disabling cookies
altogether.) This trick of associating cookies with images can even be
exploited via e-mail if you use an HTML-enabled e-mail reader that “sup-
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.



182 Chapter 8 Handling Cookies

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
ports” cookies and is associated with a browser. Thus, people could send you
e-mail that loads images, attach cookies to those images, then identify you
(e-mail address and all) if you subsequently visit their Web site. Boo.

A second privacy problem occurs when sites rely on cookies for overly
sensitive data. For example, some of the big on-line bookstores use cookies
to remember users and let you order without reentering much of your per-
sonal information. This is not a particular problem since they don’t actually
display the full credit card number and only let you send books to an
address that was specified when you did enter the credit card in full or use
the username and password. As a result, someone using your computer (or
stealing your cookie file) could do no more harm than sending a big book
order to your address, where the order could be refused. However, other
companies might not be so careful, and an attacker who got access to some-
one’s computer or cookie file could get on-line access to valuable personal
information. Even worse, incompetent sites might embed credit card or
other sensitive information directly in the cookies themselves, rather than
using innocuous identifiers that are only linked to real users on the server.
This is dangerous, since most users don’t view leaving their computer unat-
tended in their office as being tantamount to leaving their credit card sit-
ting on their desk. 

The point of all this is twofold. First, due to real and perceived privacy
problems, some users turn off cookies. So, even when you use cookies to give
added value to a site, your site shouldn’t depend on them. Second, as the
author of servlets that use cookies, you should be careful not to use cookies
for particularly sensitive information, since this would open users up to risks
if somebody accessed their computer or cookie files. 

FOXTROT © 1998 Bill Amend.  Reprinted with permission of UNIVERSAL PRESS SYNDICATE. All 
rights reserved
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.



8.3 The Servlet Cookie API 183

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

8.3 The Servlet Cookie API

To send cookies to the client, a servlet should create one or more cookies with
designated names and values with new Cookie(name, value), set any
optional attributes with cookie.setXxx (readable later by cookie.getXxx),
and insert the cookies into the response headers with
response.addCookie(cookie). To read incoming cookies, a servlet should
call request.getCookies, which returns an array of Cookie objects corre-
sponding to the cookies the browser has associated with your site (this is null if
there are no cookies in the request). In most cases, the servlet loops down this
array until it finds the one whose name (getName) matches the name it had in
mind, then calls getValue on that Cookie to see the value associated with that
name. Each of these topics is discussed in more detail in the following sections.

Creating Cookies

You create a cookie by calling the Cookie constructor, which takes two
strings: the cookie name and the cookie value. Neither the name nor the
value should contain white space or any of the following characters:

 [ ] ( ) = , " / ? @ : ;

Cookie Attributes

Before adding the cookie to the outgoing headers, you can set various charac-
teristics of the cookie by using one of the following setXxx methods, where
Xxx is the name of the attribute you want to specify. Each setXxx method
has a corresponding getXxx method to retrieve the attribute value. Except
for name and value, the cookie attributes apply only to outgoing cookies from
the server to the client; they aren’t set on cookies that come from the browser
to the server. See Appendix A (Servlet and JSP Quick Reference) for a sum-
marized version of this information.

public String getComment()
public void setComment(String comment)
These methods look up or specify a comment associated with the 
cookie. With version 0 cookies (see the upcoming subsection on 
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.



184 Chapter 8 Handling Cookies

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
getVersion and setVersion), the comment is used purely for 
informational purposes on the server; it is not sent to the client.

public String getDomain()
public void setDomain(String domainPattern)
These methods get or set the domain to which the cookie applies. 
Normally, the browser only returns cookies to the exact same host-
name that sent them. You can use setDomain method to instruct the 
browser to return them to other hosts within the same domain. To 
prevent servers setting cookies that apply to hosts outside their 
domain, the domain specified is required to start with a dot (e.g., 
.prenhall.com), and must contain two dots for noncountry domains 
like .com, .edu and .gov; and three dots for country domains like 
.co.uk and .edu.es. For instance, cookies sent from a servlet at 
bali.vacations.com would not normally get sent by the browser to 
pages at mexico.vacations.com. If the site wanted this to happen, 
the servlets could specify cookie.setDomain(".vacations.com"). 

public int getMaxAge()
public void setMaxAge(int lifetime)
These methods tell how much time (in seconds) should elapse before 
the cookie expires. A negative value, which is the default, indicates that 
the cookie will last only for the current session (i.e., until the user quits 
the browser) and will not be stored on disk. See the LongLivedCookie 
class (Listing 8.4), which defines a subclass of Cookie with a maximum 
age automatically set one year in the future. Specifying a value of 0 
instructs the browser to delete the cookie. 

public String getName()
public void setName(String cookieName)
This pair of methods gets or sets the name of the cookie. The name and 
the value are the two pieces you virtually always care about. However, 
since the name is supplied to the Cookie constructor, you rarely need to 
call setName. On the other hand, getName is used on almost every 
cookie received on the server. Since the getCookies method of Http-
ServletRequest returns an array of Cookie objects, it is common to 
loop down this array, calling getName until you have a particular name, 
then check the value with getValue. For an encapsulation of this pro-
cess, see the getCookieValue method shown in Listing 8.3.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.



8.3 The Servlet Cookie API 185

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

public String getPath()
public void setPath(String path)
These methods get or set the path to which the cookie applies. If you don’t 
specify a path, the browser returns the cookie only to URLs in or below 
the directory containing the page that sent the cookie. For example, if 
the server sent the cookie from http://ecommerce.site.com/toys/ 
specials.html, the browser would send the cookie back when connect-
ing to http://ecommerce.site.com/toys/bikes/beginners.html, 
but not to http://ecommerce.site.com/cds/classical.html. The 
setPath method can be used to specify something more general. For 
example, someCookie.setPath("/") specifies that all pages on the
server should receive the cookie. The path specified must include the 
current page; that is, you may specify a more general path than the 
default, but not a more specific one. So, for example, a servlet at 
http://host/store/cust-service/request could specify a path of 
/store/ (since /store/ includes /store/cust-service/) but not a 
path of /store/cust-service/returns/ (since this directory does not 
include /store/cust-service/).

public boolean getSecure()
public void setSecure(boolean secureFlag)
This pair of methods gets or sets the boolean value indicating whether 
the cookie should only be sent over encrypted (i.e., SSL) connections. 
The default is false; the cookie should apply to all connections.

public String getValue()
public void setValue(String cookieValue)
The getValue method looks up the value associated with the cookie; 
the setValue method specifies it. Again, the name and the value are 
the two parts of a cookie that you almost always care about, although in 
a few cases, a name is used as a boolean flag and its value is ignored (i.e., 
the existence of a cookie with the designated name is all that matters). 

public int getVersion()
public void setVersion(int version)
These methods get/set the cookie protocol version the cookie complies 
with. Version 0, the default, follows the original Netscape specification 
(http://www.netscape.com/newsref/std/cookie_spec.html). 
Version 1, not yet widely supported, adheres to RFC 2109 (retrieve 
RFCs from the archive sites listed at http://www.rfc-editor.org/).
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.



186 Chapter 8 Handling Cookies

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Placing Cookies in the Response Headers

The cookie is inserted into a Set-Cookie HTTP response header by means
of the addCookie method of HttpServletResponse. The method is called
addCookie, not setCookie, because any previously specified Set-Cookie
headers are left alone and a new header is set. Here's an example: 

Cookie userCookie = new Cookie("user", "uid1234");

userCookie.setMaxAge(60*60*24*365); // 1 year

response.addCookie(userCookie);

Reading Cookies from the Client

To send cookies to the client, you create a Cookie, then use addCookie to
send a Set-Cookie HTTP response header. To read the cookies that come
back from the client, you call getCookies on the HttpServletRequest. This
call returns an array of Cookie objects corresponding to the values that came in
on the Cookie HTTP request header. If there are no cookies in the request,
getCookies returns null. Once you have this array, you typically loop down it,
calling getName on each Cookie until you find one matching the name you
have in mind. You then call getValue on the matching Cookie and finish with
some processing specific to the resultant value. This is such a common process
that Section 8.5 presents two utilities that simplify retrieving a cookie or cookie
value that matches a designated cookie name.

8.4 Examples of Setting and 
Reading Cookies

Listing 8.1 and Figure 8–1 show the SetCookies servlet, a servlet that sets
six cookies. Three have the default expiration date, meaning that they should
apply only until the user next restarts the browser. The other three use set-
MaxAge to stipulate that they should apply for the next hour, regardless of
whether the user restarts the browser or reboots the computer to initiate a
new browsing session. 

Listing 8.2 shows a servlet that creates a table of all  the cookies sent to
it in the request. Figure 8–2 shows this servlet immediately after the
SetCookies servlet is visited. Figure 8–3 shows it after SetCookies is vis-
ited then the browser is closed and restarted. 
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.



8.4 Examples of Setting and Reading Cookies 187

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Listing 8.1 SetCookies.java 

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Sets six cookies: three that apply only to the current
 *  session (regardless of how long that session lasts)
 *  and three that persist for an hour (regardless of
 *  whether the browser is restarted).
 */

public class SetCookies extends HttpServlet {
  public void doGet(HttpServletRequest request,
                    HttpServletResponse response)
      throws ServletException, IOException {
    for(int i=0; i<3; i++) {
      // Default maxAge is -1, indicating cookie
      // applies only to current browsing session.
      Cookie cookie = new Cookie("Session-Cookie " + i,
                                 "Cookie-Value-S" + i);
      response.addCookie(cookie);
      cookie = new Cookie("Persistent-Cookie " + i,
                          "Cookie-Value-P" + i);
      // Cookie is valid for an hour, regardless of whether
      // user quits browser, reboots computer, or whatever.
      cookie.setMaxAge(3600);
      response.addCookie(cookie);
    } 
    response.setContentType("text/html");
    PrintWriter out = response.getWriter();
    String title = "Setting Cookies";
    out.println
      (ServletUtilities.headWithTitle(title) +
       "<BODY BGCOLOR=\"#FDF5E6\">\n" +
       "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +
       "There are six cookies associated with this page.\n" +
       "To see them, visit the\n" +
       "<A HREF=\"/servlet/coreservlets.ShowCookies\">\n" +
       "<CODE>ShowCookies</CODE> servlet</A>.\n" +
       "<P>\n" +
       "Three of the cookies are associated only with the\n" +
       "current session, while three are persistent.\n" +
       "Quit the browser, restart, and return to the\n" +
       "<CODE>ShowCookies</CODE> servlet to verify that\n" +
       "the three long-lived ones persist across sessions.\n" +
       "</BODY></HTML>");
  }
}

econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.



188 Chapter 8 Handling Cookies

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
Listing 8.2 ShowCookies.java 

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

/** Creates a table of the cookies associated with
 *  the current page.
 */

public class ShowCookies extends HttpServlet {
  public void doGet(HttpServletRequest request,
                    HttpServletResponse response)
      throws ServletException, IOException {
    response.setContentType("text/html");
    PrintWriter out = response.getWriter();
    String title = "Active Cookies";
    out.println(ServletUtilities.headWithTitle(title) +
                "<BODY BGCOLOR=\"#FDF5E6\">\n" +
                "<H1 ALIGN=\"CENTER\">" + title + "</H1>\n" +

Figure 8–1 Result of SetCookies servlet.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.



8.4 Examples of Setting and Reading Cookies 189

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

                "<TABLE BORDER=1 ALIGN=\"CENTER\">\n" +
                "<TR BGCOLOR=\"#FFAD00\">\n" +
                "  <TH>Cookie Name\n" +
                "  <TH>Cookie Value");
    Cookie[] cookies = request.getCookies();
    Cookie cookie;
    for(int i=0; i<cookies.length; i++) {
      cookie = cookies[i];
      out.println("<TR>\n" +
                  "  <TD>" + cookie.getName() + "\n" +
                  "  <TD>" + cookie.getValue());
    }
    out.println("</TABLE></BODY></HTML>");
  }
}

Listing 8.2 ShowCookies.java (continued)

Figure 8–2 Result of visiting the ShowCookies servlet within an hour of visiting 
SetCookies in the same browser session.
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.



190 Chapter 8 Handling Cookies

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
8.5 Basic Cookie Utilities

This section presents some simple but useful utilities for dealing with cookies. 

Finding Cookies with Specified Names

Listing 8.3 shows a section of ServletUtilities.java that simplifies the
retrieval of a cookie or cookie value, given a cookie name. The getCookie-
Value method loops through the array of available Cookie objects, returning
the value of any Cookie whose name matches the input. If there is no match,
the designated default value is returned. So, for example, my typical
approach for dealing with cookies is as follows:

Cookie[] cookies = request.getCookies();

String color = 

ServletUtilities.getCookieValue(cookies, "color", "black");

String font =

ServletUtilities.getCookieValue(cookies, "font", "Arial");

The getCookie method also loops through the array comparing names,
but returns the actual Cookie object instead of just the value. That method is
for cases when you want to do something with the Cookie other than just
read its value.

Figure 8–3 Result of visiting the ShowCookies servlet within an hour of visiting 
SetCookies in a different browser session.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.



8.6 A Customized Search Engine Interface 191

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Creating Long-Lived Cookies

Listing 8.4 shows a small class that you can use instead of Cookie if you want
your cookie to automatically persist when the client quits the browser. See
Listing 8.5 for a servlet that uses this class. 

8.6 A Customized Search Engine 
Interface

Listing 8.5 shows the CustomizedSearchEngines servlet, a variation of the
SearchEngines example previously shown in Section 6.3. Like the Search-
Engines servlet (see Figure 8–5), the CustomizedSearchEngines servlet

Listing 8.3 ServletUtilities.java 

package coreservlets;

import javax.servlet.*;
import javax.servlet.http.*;

public class ServletUtilities {
// Other methods in this class shown in earlier chapters.

  public static String getCookieValue(Cookie[] cookies,
                                      String cookieName,
                                      String defaultValue) {
    for(int i=0; i<cookies.length; i++) {
      Cookie cookie = cookies[i];
      if (cookieName.equals(cookie.getName()))
        return(cookie.getValue());
    }
    return(defaultValue);
  }

  public static Cookie getCookie(Cookie[] cookies,
                                 String cookieName) {
    for(int i=0; i<cookies.length; i++) {
      Cookie cookie = cookies[i];
      if (cookieName.equals(cookie.getName()))
        return(cookie);
    }
    return(null);
  }
}

econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.



192 Chapter 8 Handling Cookies

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
reads the user choices from the HTML front end and forwards them to the
appropriate search engine. In addition, the CustomizedSearchEngines
servlet returns to the client cookies that store the search values. Then, when
the user comes back to the front-end servlet at a later time (even after quit-
ting the browser and restarting), the front-end page is initialized with the val-
ues from the previous search. 

To accomplish this customization, the front end is dynamically generated
instead of coming from a static HTML file (see Listing 8.6 for the source
code and Figure 8–4 for the result). The front-end servlet reads the cookie
values and uses them for the initial values of the HTML form fields. Note
that it would not have been possible for the front end to return the cookies
directly to the client. That’s because the search selections aren’t known until
the user interactively fills in the form and submits it, which cannot occur until
after the servlet that generated the front end has finished executing.

This example uses the LongLivedCookie class, shown in the previous sec-
tion, for creating a Cookie that automatically has a long-term expiration date,
instructing the browser to use it beyond the current session. 

Listing 8.4 LongLivedCookie.java 

package coreservlets;

import javax.servlet.http.*;

/** Cookie that persists 1 year. Default Cookie doesn't
 *  persist past current session.
 */

public class LongLivedCookie extends Cookie {
  public static final int SECONDS_PER_YEAR = 60*60*24*365;
  
  public LongLivedCookie(String name, String value) {
    super(name, value);
    setMaxAge(SECONDS_PER_YEAR);
  }
}

n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.



8.6 A Customized Search Engine Interface 193

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Listing 8.5 CustomizedSearchEngines.java 

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.net.*;

/** A variation of the SearchEngine servlet that uses
 *  cookies to remember users choices. These values
 *  are then used by the SearchEngineFrontEnd servlet
 *  to initialize the form-based front end.
 */

public class CustomizedSearchEngines extends HttpServlet {
  public void doGet(HttpServletRequest request,
                    HttpServletResponse response)
      throws ServletException, IOException {
    
    String searchString = request.getParameter("searchString");
    if ((searchString == null) ||
        (searchString.length() == 0)) {
      reportProblem(response, "Missing search string.");
      return;
    }
    Cookie searchStringCookie =
      new LongLivedCookie("searchString", searchString);
    response.addCookie(searchStringCookie);
    // The URLEncoder changes spaces to "+" signs and other
    // non-alphanumeric characters to "%XY", where XY is the
    // hex value of the ASCII (or ISO Latin-1) character.
    // Browsers always URL-encode form values, so the
    // getParameter method decodes automatically. But since
    // we’re just passing this on to another server, we need to
    // re-encode it.
    searchString = URLEncoder.encode(searchString);
    String numResults = request.getParameter("numResults");
    if ((numResults == null) ||
        (numResults.equals("0")) ||
        (numResults.length() == 0)) {
      numResults = "10";
    }
    Cookie numResultsCookie =
      new LongLivedCookie("numResults", numResults);
    response.addCookie(numResultsCookie);
    String searchEngine = request.getParameter("searchEngine");
    if (searchEngine == null) {
      reportProblem(response, "Missing search engine name.");
      return;
    }
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.



194 Chapter 8 Handling Cookies

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
    Cookie searchEngineCookie =
      new LongLivedCookie("searchEngine", searchEngine);
    response.addCookie(searchEngineCookie);
    SearchSpec[] commonSpecs = SearchSpec.getCommonSpecs();
    for(int i=0; i<commonSpecs.length; i++) {
      SearchSpec searchSpec = commonSpecs[i];
      if (searchSpec.getName().equals(searchEngine)) {
        String url =
          searchSpec.makeURL(searchString, numResults);
        response.sendRedirect(url);
        return;
      }
    }
    reportProblem(response, "Unrecognized search engine.");
  }

  private void reportProblem(HttpServletResponse response,
                             String message)
      throws IOException {
    response.sendError(response.SC_NOT_FOUND,
                       "<H2>" + message + "</H2>");
  }
  
  public void doPost(HttpServletRequest request,
                     HttpServletResponse response)
      throws ServletException, IOException {
    doGet(request, response);
  }
}

Listing 8.6 SearchEnginesFrontEnd.java 

package coreservlets;

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import java.net.*;

/** Dynamically generated variation of the
 *  SearchEngines.html front end that uses cookies
 *  to remember a user's preferences.
 */

Listing 8.5 CustomizedSearchEngines.java (continued)
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.



8.6 A Customized Search Engine Interface 195

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

public class SearchEnginesFrontEnd extends HttpServlet {
  public void doGet(HttpServletRequest request,
                    HttpServletResponse response)
      throws ServletException, IOException {
    Cookie[] cookies = request.getCookies();
    String searchString =
      ServletUtilities.getCookieValue(cookies,
                                      "searchString",
                                      "Java Programming");
    String numResults =
      ServletUtilities.getCookieValue(cookies,
                                      "numResults",
                                      "10");
    String searchEngine =
      ServletUtilities.getCookieValue(cookies,
                                      "searchEngine",
                                      "google");
    response.setContentType("text/html");
    PrintWriter out = response.getWriter();
    String title = "Searching the Web";
    out.println
      (ServletUtilities.headWithTitle(title) +
       "<BODY BGCOLOR=\"#FDF5E6\">\n" +
       "<H1 ALIGN=\"CENTER\">Searching the Web</H1>\n" +
       "\n" +
       "<FORM ACTION=\"/servlet/" +
         "coreservlets.CustomizedSearchEngines\">\n" +
       "<CENTER>\n" +
       "Search String:\n" +
       "<INPUT TYPE=\"TEXT\" NAME=\"searchString\"\n" +
       "       VALUE=\"" + searchString + "\"><BR>\n" +
       "Results to Show Per Page:\n" +
       "<INPUT TYPE=\"TEXT\" NAME=\"numResults\"\n" + 
       "       VALUE=" + numResults + " SIZE=3><BR>\n" +
       "<INPUT TYPE=\"RADIO\" NAME=\"searchEngine\"\n" +
       "       VALUE=\"google\"" +
       checked("google", searchEngine) + ">\n" +
       "Google |\n" +
       "<INPUT TYPE=\"RADIO\" NAME=\"searchEngine\"\n" +
                "       VALUE=\"infoseek\"" +
       checked("infoseek", searchEngine) + ">\n" +
       "Infoseek |\n" +
       "<INPUT TYPE=\"RADIO\" NAME=\"searchEngine\"\n" +
       "       VALUE=\"lycos\"" +
       checked("lycos", searchEngine) + ">\n" +
       "Lycos |\n" +
       "<INPUT TYPE=\"RADIO\" NAME=\"searchEngine\"\n" +
       "       VALUE=\"hotbot\"" +

Listing 8.6 SearchEnginesFrontEnd.java (continued)
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.



196 Chapter 8 Handling Cookies

Second editio
Servlet and J

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.
       checked("hotbot", searchEngine) + ">\n" +
       "HotBot\n" +
       "<BR>\n" +
       "<INPUT TYPE=\"SUBMIT\" VALUE=\"Search\">\n" +
       "</CENTER>\n" +
       "</FORM>\n" +
       "\n" +
       "</BODY>\n" +
       "</HTML>\n");
  }

  private String checked(String name1, String name2) {
    if (name1.equals(name2))
      return(" CHECKED");
    else
      return("");
  }
}

Listing 8.6 SearchEnginesFrontEnd.java (continued)

Figure 8–4 Result of SearchEnginesFrontEnd servlet. Whatever options you 
specify will be the initial choices next time you visit the same servlet.
n of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
SP training courses by book’s author: courses.coreservlets.com.



8.6 A Customized Search Engine Interface 197

© Prentice Hall and Sun Microsystems. Personal use only; do not redistribute.

S
S

Figure 8–5 Result of CustomizedSearchEngines servlet. 
econd edition of this book: www.coreservlets.com; Sequel: www.moreservlets.com.
ervlet and JSP training courses by book’s author: courses.coreservlets.com.


	Handling Cookies
	Topics in This Chapter
	8
	C
	8.1 Benefits of Cookies
	Identifying a User During an E-commerce Session
	Avoiding Username and Password
	Customizing a Site
	Focusing Advertising

	8.2 Some Problems with Cookies
	8.3 The Servlet Cookie API
	Creating Cookies
	Cookie Attributes
	public String getComment() public void setComment(String comment)
	public String getDomain() public void setDomain(String domainPattern)
	public int getMaxAge() public void setMaxAge(int lifetime)
	public String getName() public void setName(String cookieName)
	public String getPath() public void setPath(String path)
	public boolean getSecure() public void setSecure(boolean secureFlag)
	public String getValue() public void setValue(String cookieValue)
	public int getVersion() public void setVersion(int version)
	Placing Cookies in the Response Headers
	Reading Cookies from the Client


	8.4 Examples of Setting and Reading Cookies
	Figure 8–1 Result of SetCookies servlet.
	Figure 8–2 Result of visiting the ShowCookies servlet within an hour of visiting SetCookies in th...
	Figure 8–3 Result of visiting the ShowCookies servlet within an hour of visiting SetCookies in a ...

	8.5 Basic Cookie Utilities
	Finding Cookies with Specified Names
	Creating Long-Lived Cookies

	8.6 A Customized Search Engine Interface
	Figure 8–4 Result of SearchEnginesFrontEnd servlet. Whatever options you specify will be the init...
	Figure 8–5 Result of CustomizedSearchEngines servlet.



